Boiler Knowledge

Boiler room knowledge full analysis

As the core facility for heat energy supply, boiler room is widely used in many fields such as heating and industrial production. This article will give you a detailed introduction to the working principle, equipment composition, safety setting requirements and current development trends of the boiler industry.

1. Working principle of boiler room

The working principle of boiler room is mainly based on the combustion of fuel and the transfer of heat energy. The following are the basic steps of boiler room work:

Fuel combustion: The boiler room uses different types of fuels such as coal, fuel oil, and natural gas. These fuels are ignited in the combustion chamber and release a large amount of heat energy.
Heat energy conduction: The high-temperature flue gas generated by combustion is transferred to the circulating medium (usually water or steam) in the boiler through the heat conduction of the boiler furnace wall.
Heating medium: Water or steam is used as a heat transfer medium and flows through the pipe system in the boiler. The heat energy is transferred to the water or steam to increase its temperature.
Energy conversion: The heat energy generated by combustion is eventually converted into mechanical energy or thermal energy and used for steam supply in heating or other industrial processes.
Steam circulation: After the water is heated and converted into steam, the steam is pushed into the heat transfer loop and circulates throughout the boiler system. The steam further transfers heat to the medium to be heated, then is cooled and turned into water, and returns to the boiler for circulation again.

2. Equipment composition of the boiler room

The equipment in the boiler room includes the boiler body and auxiliary equipment.

Boiler body: mainly includes steam boiler, furnace, steam superheater, economizer and air preheater. These components together constitute the basic structure of the boiler, realizing the combustion of fuel and the transfer of heat energy.
Auxiliary equipment:
Coal transportation and ash removal system: including conveyor and ash car, which are used for the transportation of fuel and the discharge of ash.
Supply and induced draft system: including blower, induced draft fan, chimney and dust collector, which are used to provide the required air for combustion and discharge flue gas.
Water and steam system: including feed water pump, water treatment equipment, water tank, steam cylinder and sewage desuperheating pool, which are used for water treatment and steam distribution.

3. Safety setting requirements of the boiler room

The safety setting requirements of the boiler room are strict to ensure the safety of equipment and personnel.

Equipment layout: The equipment in the boiler room should be easy to operate, pass and repair.
Lighting and ventilation: The boiler room should have sufficient lighting and good ventilation, as well as necessary cooling and antifreeze measures.
Prevent water accumulation: The boiler room should prevent water accumulation and ensure that the ground is flat and without steps.
Load-bearing structure: The load-bearing beams and columns of the boiler room should be at a certain distance from the boiler or other measures should be taken to prevent damage by high temperature.
Exit setting: There are at least two exits on each floor of the boiler room, located on both sides. For single-layer boilers with smaller areas, only one exit can be opened.
Door and window setting: The door leading to the outside of the boiler room should open outward and remain unobstructed during the operation of the boiler. The door of the studio or living room in the boiler room should open to the inside of the boiler room.
Lighting equipment: There should be sufficient lighting at the operating location and water level gauge, pressure gauge, thermometer, flow meter, etc. in the boiler room, and equipped with spare lighting equipment or tools.

4. Development trend of the boiler industry

At present, the boiler industry is undergoing a transformation from traditional coal-fired boilers to clean energy boilers.

Clean energy boilers: With the continuous advancement of the country's energy-saving and environmental protection policies, the market share of clean energy boilers such as gas boilers and electric boilers has continued to rise, which helps to reduce pollutant emissions.
Technological innovation: The application of advanced technologies such as water-cooled premixed combustion technology, flue gas condensation heat exchange technology and vacuum phase change heat exchange technology has improved the thermal efficiency and environmental performance of boilers.
Intelligence: The introduction of intelligent and automated technologies makes the operation of boilers more efficient and safe.
Market demand: With the in-depth advancement of industrialization and urbanization, and the improvement of residents' living standards, the demand for thermal energy continues to grow, which has promoted the stable development of the boiler industry.
In summary, as an important facility for thermal energy supply, the working principle, equipment composition and safety setting requirements of the boiler room are all crucial. At the same time, with the continuous development of the boiler industry, the application of clean energy boilers and intelligent technologies will become a future development trend.

2024-11-21 14:50:29

The use and advantages of condensing gas boilers

Condensing gas boilers, as modern, efficient, energy-saving and environmentally friendly heating equipment, have gradually become the main choice for natural gas energy-saving heating. It not only greatly improves operating efficiency, but also significantly reduces users' operating costs and brings considerable economic benefits. This article will explain in detail how to use a condensing gas boiler and its significant advantages.

How to use

Security check:
Before using a condensing gas boiler, a comprehensive safety check must be carried out. This includes checking whether each valve instrument is loose, whether the drain port and drain port are open, etc., to ensure that the various safety indexes of the boiler are at normal levels.
Water system connection and water filling:
After connecting the water system, inject water into the system and observe the water pressure changes on the pressure gauge inside the boiler. When the water pressure reaches the limited value range, stop water injection and check whether there is looseness or leakage at each waterway connection.
Power on and exhaust:
After turning on the power, press the power button to start the water pump and discharge the air from each heat exchanger coil. Or you can manually unscrew the manual exhaust valve at the front of the heat exchanger to exhaust. After exhausting, if the water pressure drops, water needs to be replenished until the water pressure reaches the working range.
Ignition operation:
After the smoke pipe is connected, connect the air source and perform ignition operation. Observe the red signal light on the sub-control board. The signal light will flash slowly after power is turned on, and will flash quickly after ignition is successful.
Parameter adjustment:
Under normal circumstances, the parameters of the condensing gas boiler have been adjusted before leaving the factory, and there is no need to make adjustments on site. However, if the local natural gas calorific value, air pressure or altitude changes, the combustion system must be analyzed and adjusted by professional technicians.

Advantages

High efficiency and energy saving:
The thermal efficiency of condensing gas boilers is as high as over 106%, far exceeding the domestic standard of about 94%. It recovers the heat energy in the flue gas by condensing the flue gas, greatly improving the thermal efficiency. The exhaust gas temperature is reduced to 5070°C, fully recovering the sensible heat in the flue gas and the latent heat of condensation of water vapor. Compared with traditional boilers (thermal efficiency is generally between 85% and 91%), it can save about 10% of gas.
Environmentally friendly cleaning:
The ultra-low carbon monoxide (CO) and nitrogen oxides (NOX) emissions of condensing gas boilers make them cleaner and more environmentally friendly, and can meet strict emission standards, such as Beijing’s 2017 boiler emission standards. More advanced condensing gas boilers use smokeless combustion technology, reducing nitrogen oxide emissions to more than 35mg/kwh.
Safe and reliable:
The condensing gas boiler is designed in full compliance with European safety requirements, and the combustion status is monitored throughout the process to eliminate the risk of excessive carbon monoxide. In addition, its powerful control system ensures that each boiler operates within an energy-saving range, increasing the safety of use.
Low exhaust smoke temperature:
The exhaust gas temperature of the condensing gas boiler is between 30°C and 70°C, and plastic pipes (such as PP, PVC) can be used, which further improves its energy-saving effect.
Precise temperature control:
Condensing gas boilers have precise temperature control capabilities, and the water temperature control accuracy can reach ±0.5°C, ensuring the comfort and stability of heating.
Economical and practical:
The high efficiency and energy saving characteristics of condensing gas boilers enable it to significantly reduce users' operating costs. In addition, due to its excellent environmental performance, users may also enjoy government environmental subsidies or preferential policies, further reducing usage costs.
In summary, condensing gas boilers have become the preferred equipment in modern heating systems due to their significant advantages such as high efficiency and energy saving, environmental protection and cleanliness, safety and reliability, low exhaust gas temperature, precise temperature control, economy and practicality. During use, users only need to operate according to specifications and perform regular maintenance and upkeep to ensure long-term stable operation and bring long-lasting and stable heating effects to users.

2024-11-12 10:44:13

T6 vacuum hot water boiler: the preferred solution for efficient, energy-saving and environmentally

In today's society, with the increasing awareness of environmental protection and the increasingly tense energy consumption, it is particularly important to choose an efficient, environmentally friendly and safe heating equipment. With its unique advantages and excellent performance, T6 vacuum hot water boiler has become the ideal choice for many users. This article will introduce in detail the use of T6 vacuum hot water boiler and its significant advantages.

1. How to use T6 vacuum hot water boiler

Device operation: Before the boiler is put into operation, a comprehensive inspection of the boiler and its ancillary equipment should be carried out, including mechanical integrity and safety, specifications and sealing of the piping system, grounding and insulation resistance of the electrical system, etc. Ensure all equipment complies with national standards and usage requirements.
Start-up and shutdown: Before starting, it is necessary to correctly drain the water, clean the boiler according to the operating instructions, and check the weather conditions. After startup, the operation should be carried out in strict accordance with the prescribed steps to avoid unauthorized adjustment of control parameters. When an abnormality is discovered during boiler operation, the boiler should be shut down immediately and the emergency shutdown device should not be used casually.
Daily operation: In daily use, active maintenance should be carried out, such as regular sewage discharge, inspection of safety valves and pressure gauges, etc. At the same time, pay attention to the surrounding environment and maintain good ventilation to avoid potential safety hazards. Parameters such as water temperature, water pressure, and electrical equipment protection must be managed in a standardized manner. Debris must not be piled around the boiler to keep the site dry and clean.
Emergency handling: In the event of an emergency, the boiler and corresponding supporting equipment should be shut down immediately, the fuel and power supply should be cut off, the boiler's emergency shutdown device, such as safety valves, etc. should be activated, and the alarm should be called immediately to seek assistance from relevant professionals.

2. Significant advantages of T6 vacuum hot water boiler

 

High efficiency and energy saving: T6 vacuum hot water boiler adopts advanced combustion technology, which can fully burn fuel, improve thermal efficiency and reduce energy consumption. Compared with traditional boilers, it can save a lot of energy costs and create greater economic benefits for enterprises.
Environmental protection and safety: The boiler adopts a fully enclosed combustion method, and the flue gas undergoes multi-stage purification treatment before being discharged, which complies with national environmental protection standards. At the same time, the boiler adopts an intelligent control system, which can realize functions such as automatic start and stop, automatic temperature adjustment, etc., which greatly improves the safety and reliability of use.
Flexible and stable: T6 vacuum hot water boiler is suitable for a variety of fuels, such as natural gas, liquefied petroleum gas, etc., and can be customized according to customer needs. At the same time, the boiler adopts a modular design and can easily operate multiple units in parallel to ensure the stability and reliability of the heating system.
Easy maintenance: The boiler has a simple and compact structure, making it easy to install and maintain. The professional after-sales service team ensures that customers receive timely technical support and solutions during use.
Safe and reliable: The internal pressure of the vacuum boiler is always in a vacuum state, avoiding dangers such as expansion, explosion, and rupture. At the same time, a high degree of automated control makes operation easier and reduces the risk of human error.
Long service life: Since oxygen corrosion and scaling are not easy to occur inside the vacuum boiler, its service life is relatively long, generally up to more than 20 years.
To sum up, the T6 vacuum hot water boiler has become a popular heating equipment on the market due to its significant advantages such as high efficiency, energy saving, environmental protection and safety, flexibility and stability, easy maintenance, safety and reliability, and long service life. Whether for home users or corporate customers, choosing T6 vacuum hot water boiler will be the preferred solution to achieve efficient, environmentally friendly and safe heating.

2024-11-05 15:33:38

Boiler operators need to master a wide range of knowledge and skills

Essential knowledge

Operation principle of boiler:
Understand the basic structure and working principle of the boiler, including the combustion system, steam-water system, smoke and air system, etc.
Master the operation procedures of boiler startup, operation, shutdown and accident handling.
Combustion adjustment:
Be familiar with the control of the ignition point of coal powder airflow to avoid the impact of premature or late ignition on boiler operation.
Master the adjustment method of the flame center height to ensure uniform temperature distribution in the furnace.
Understand the impact of fuel type and characteristics on the combustion process, as well as the basic principles of air distribution adjustment.
Boiler water level and steam pressure control:
Master the adjustment method of the boiler drum water level to ensure that the water level fluctuates within the normal range.
Understand the balance between steam pressure and boiler steam production, external steam consumption, and the impact of steam pressure changes on boiler operation.
Boiler efficiency and heat loss:
Be familiar with the calculation method and influencing factors of boiler efficiency, including flue gas heat loss, chemical incomplete combustion heat loss, mechanical incomplete combustion heat loss, etc.
Master the measures and methods to reduce heat loss and improve boiler efficiency.
Boiler accident handling:
Understand the types and causes of common boiler accidents, such as furnace coking, water wall tube burst, superheater overheating, etc.
Master the basic principles and emergency measures for accident handling to ensure safe operation of the boiler.
Boiler water quality treatment:
Understand the impact of boiler water quality on boiler operation, as well as the importance and methods of water quality treatment.
Master the deoxygenation, softening, and anti-corrosion treatment measures for boiler feed water.
Boiler piping system:
Be familiar with the layout and connection methods of the boiler piping system, including feed water pipes, steam pipes, and sewage pipes.
Understand the maintenance and maintenance methods of the piping system, as well as the troubleshooting methods for common faults.

Pipeline introduction

Feed water pipe:
The feed water pipe is an important pipe that provides deoxygenated feed water to the boiler.
The pipe is usually equipped with regulating valves, flow meters, pressure gauges and other instruments to monitor and control the feed water volume and water pressure.
Steam pipe:
The steam pipe is a pipe that transports steam generated by the boiler to the steam turbine or other steam-using equipment.
The pipes are usually equipped with accessories such as check valves, steam traps, and safety valves to ensure smooth steam delivery and safe use.
Sewage pipe: The sewage pipe is a pipe that discharges sewage and dirt from the bottom of the boiler out of the boiler.
The pipes are usually equipped with accessories such as sewage valves and sewage expansion tanks to reduce noise and heat loss during sewage discharge.
Other pipes: There are other auxiliary pipes in the boiler room, such as fuel pipes, gas pipes, air pipes, etc., which are used to provide fuel and air to the boiler.
In summary, the knowledge and skills that boiler operators need to master are quite extensive, including knowledge of boiler operation principles, combustion adjustments, boiler water level and steam pressure control, boiler efficiency and heat loss, boiler accident handling, boiler water quality treatment, and boiler piping systems. At the same time, they also need to understand the layout, connection methods, maintenance methods, and troubleshooting methods of various piping systems.

2024-10-29 09:06:27

Introduction to the knowledge of combined heat and power system (CHP)

1. Definition and Principle

A cogeneration system is an energy utilization method that uses a heat engine or power station to simultaneously produce electricity and useful heat. In standalone electricity production, some energy must be discarded as waste heat, but in combined heat and power, this heat can be put to use, allowing for efficient use of energy.

2. System composition

Combined heat and power systems usually include the following main parts:

Heat source: primary energy such as coal, natural gas, etc., used for combustion to generate heat energy.
Power generation equipment: such as steam turbines, gas turbines, etc., which use thermal energy to drive generators to generate electricity.
Waste heat recovery equipment: used to capture the waste heat generated during power generation and use it for heating or other purposes.
Control system: used to monitor and control the operation of the entire system to ensure system stability and efficiency.

3. Advantages and benefits

Combined heat and power systems have the following advantages and benefits:

Improve energy efficiency: By generating electricity and heat at the same time, combined heat and power systems can significantly improve energy efficiency, often reaching more than 80%.
Reduce environmental pollution: Compared with the traditional heat and power split production method, the combined heat and power system can reduce the emission of sulfur dioxide, smoke and other pollutants, which is beneficial to improving environmental quality.
Reduce energy costs: Because the combined heat and power system can achieve efficient use of energy, it can reduce energy costs and improve economic benefits.
Enhance energy supply stability: Combined heat and power systems can be used as part of a distributed energy system to enhance the stability and reliability of energy supply.

4. Application fields

Combined heat and power systems are widely used in various fields, including but not limited to:

Industrial parks: In industrial parks, combined heat and power systems can provide power and heat to multiple enterprises, reducing energy costs and improving energy utilization efficiency.
Urban central heating: In urban central heating, the combined heat and power system can be used as the main heat source to provide stable and reliable heating services to urban residents.
Data center: Data centers require a large amount of power and cooling energy. The combined heat and power system can provide power and cooling energy for the data center while reducing energy waste and environmental pollution.
Hospitals and schools: Public facilities such as hospitals and schools require large amounts of electricity and heat, and combined heat and power systems can provide these facilities with a stable and reliable energy supply.

5. Development Trend

With the increasing global attention to energy efficiency and environmental protection, the development trends of combined heat and power systems are as follows:

Continuous technological innovation: With the advancement and innovation of science and technology, the technology of combined heat and power systems will continue to be improved and optimized to improve energy efficiency and environmental protection performance.
Increasing policy support: Governments around the world have introduced relevant policies to support the development and application of cogeneration systems, such as providing tax incentives and financial subsidies.
Market demand continues to grow: With the acceleration of industrialization and urbanization and the continuous growth of energy demand, the market demand for combined heat and power systems will continue to grow.
To sum up, the combined heat and power system, as an efficient and environmentally friendly way of utilizing energy, will play an increasingly important role in future development.

2024-10-21 11:17:05

Boiler Use and Safety Knowledge Guide in October 2024

As autumn deepens, the temperature gradually drops. As an important heating equipment, the frequency of use of boilers also increases. In this critical period of October 2024, it is particularly important to understand and master the correct use and safety knowledge of boilers. The following is a comprehensive guide to boiler use and safety knowledge, which aims to help users better manage and maintain boiler equipment to ensure safe and efficient enjoyment of warmth.
 

1. The basic working principle of boilers

 

 
A boiler is an energy conversion device that uses the heat energy generated by fuel combustion to heat water into steam or hot water, and then transports it to various hot spots through pipelines to achieve heating or process heat. The core components of the boiler include burners, heat exchangers, control systems, etc., which work together to ensure the stable operation of the boiler.
 

2. Correct use of boilers


Pre-start inspection: Before starting the boiler, the boiler body, combustion system, control system, etc. should be fully inspected to ensure that all components are intact, tightly connected, and leak-free. At the same time, check whether safety accessories such as water level gauges, pressure gauges, and safety valves are sensitive and reliable.
Ignition and heating: According to the boiler operating procedures, ignition and heating operations should be carried out step by step. Pay attention to controlling the heating speed to avoid rapid heating that may cause uneven heating of the boiler, excessive stress, and other problems.
Operation monitoring: During the operation of the boiler, close attention should be paid to changes in key parameters such as water level, pressure, and temperature, and the combustion intensity and circulating water volume should be adjusted in time to ensure that the boiler operates under safe and economic conditions.
Blowdown and descaling: Regular blowdown and descaling are important measures to keep the boiler water clean and improve thermal efficiency. A reasonable blowdown and descaling plan should be formulated according to the water quality and strictly implemented.
 

3. Boiler safety knowledge

 

 
The importance of safety accessories: Safety accessories such as water level gauges, pressure gauges, and safety valves are important guarantees for the safe operation of boilers. These accessories should be calibrated regularly to ensure their sensitivity and reliability. Once an abnormality is found, the machine should be shut down immediately for processing.
Prevent overpressure operation: Overpressure operation of the boiler is one of the main causes of accidents. Therefore, the working pressure of the boiler should be strictly controlled and should not exceed the design pressure. At the same time, an overpressure protection device should be set up, and once the pressure exceeds the set value, the machine will automatically shut down and alarm.
Prevent dry burning due to lack of water: Dry burning due to lack of water in the boiler will cause overheating, deformation and even rupture of the boiler heating surface. Therefore, the boiler water level should be checked regularly to ensure that the water level is within the normal range. Once the water level is abnormal, the boiler should be shut down and water should be replenished immediately.
Prevent over-temperature operation: Over-temperature operation of the boiler will accelerate the aging, corrosion and scaling of the heating surface and reduce the service life of the boiler. Therefore, the outlet water temperature of the boiler should be strictly controlled and must not exceed the design temperature. At the same time, an over-temperature protection device should be set up, and once the temperature exceeds the set value, the boiler will automatically shut down and alarm.
Regular maintenance: Regular maintenance of the boiler is the key to ensure its long-term stable operation. A detailed maintenance plan should be formulated, including cleaning the burner, replacing the filter, checking the seals, etc., to ensure that all parts of the boiler are in good working condition.
 

4. Emergency treatment measures


During the operation of the boiler, once a fault or accident occurs, emergency treatment measures should be taken immediately to prevent the situation from escalating. The following are some common emergency treatment measures:

Shutdown alarm: Once the boiler is found to be abnormal or faulty, it should be shut down immediately and the alarm should be sounded, and the relevant personnel should be notified to handle it.
Cut off the fuel supply: When shutting down, the fuel supply should be cut off quickly to prevent the spread of fire or explosion accidents.
Discharge steam or hot water: After shutting down, the discharge valve should be opened to discharge the steam or hot water in the boiler to reduce the pressure and temperature in the boiler.
Evacuate personnel: In an emergency, personnel in the boiler room and its surroundings should be evacuated quickly to ensure personnel safety.
Contact professionals: While taking emergency measures, professional boiler maintenance personnel or relevant institutions should be contacted as soon as possible for further troubleshooting and repair work.
In summary, the Boiler Use and Safety Knowledge Guide in October 2024 covers many aspects such as the basic working principle of the boiler, correct use methods, safety knowledge, and emergency treatment measures. It is hoped that users can carefully study and master this knowledge to ensure the safe and efficient operation of the boiler and provide strong guarantees for winter heating work.

2024-10-08 16:15:48

Boiler knowledge overview at the end of September 2024

Boiler industry market development status

As of the end of September 2024, China's boiler manufacturing industry continues to maintain a strong development momentum. According to the latest data from Shangpu Consulting Group, China's boiler market has expanded significantly in the first half of 2024. The full-year market size is expected to reach approximately 250 billion yuan, with the year-on-year growth rate remaining at a high level, reflecting strong demand in the boiler market. and technological innovation.

In terms of policy support, the National Development and Reform Commission, the State Administration for Market Regulation and other departments continue to issue relevant policies to promote the green, low-carbon and efficient development of the industrial boiler industry. For example, documents such as the "Notice on Further Strengthening the Update, Upgrade, Application and Implementation of Energy Saving Standards" clarified the improvement of energy efficiency standards for key energy-consuming products and equipment such as industrial boilers, and promoted the popularization and application of clean energy boilers.

Boiler working principle and classification

As an important thermal energy supply equipment, boilers are widely used in many industries such as electric power, machinery, metallurgy, chemical industry, textile, papermaking, and food. Its basic principle is to generate high-temperature flue gas through fuel combustion, and then transfer heat to water or other working fluids to heat, vaporize or generate superheated steam. The main working process of the boiler includes three links: combustion, heat transfer and steam-water circulation.

Boilers can be divided into many types according to fuel type, structural form, purpose, etc. Common boilers include steam boilers, hot water boilers and organic heat carrier boilers. Among them, steam boilers are mainly used for steam supply in industrial production, hot water boilers are mostly used for civil heating, and organic heat carrier boilers are widely used in situations that require high-temperature heat sources.

Boiler technology development trends

High efficiency and energy saving: With the advancement of environmental protection and energy saving policies, high efficiency and energy saving have become an important development direction of the boiler industry. Modern boilers generally adopt high-efficiency combustion technology and waste heat recovery technology, which significantly improves energy utilization efficiency and reduces energy consumption and emissions.
Intelligence: Digital and intelligent technologies are gradually being applied to the design, manufacturing, operation and maintenance of boilers. Smart boilers have adaptive capabilities and remote monitoring capabilities, enabling more precise control and management, improving operating efficiency and safety.
Cleanliness: The proportion of clean energy boilers continues to rise, and coal-fired boilers, especially small-capacity coal-fired industrial boilers, are gradually withdrawing from the market. Clean energy boilers such as natural gas boilers and electric boilers are more widely used, promoting the green transformation of the boiler industry.
Large-scale: Due to its relatively higher thermal efficiency, safety and balance and other characteristics, large-capacity industrial boilers are showing an upward trend in the product structure. Enterprises continue to increase investment in technological innovation and R&D to improve product performance and efficiency.

Boiler safety management

As a high-temperature and high-pressure equipment, the safety management of boilers is crucial. In the daily operation and operation of boilers, relevant safety regulations and operating procedures must be strictly observed to ensure the safety of personnel and equipment.

Regular inspection: The main accessories of the boiler such as safety valves, pressure gauges, water level gauges, etc. need to be calibrated at least once a year. The boiler itself needs to undergo regular internal and external inspections and water pressure inspections to ensure the normal operation and safety of the equipment.
Labor protection: When working in high temperature and high pressure environments, operators should wear anti-scalding clothing, anti-scalding gloves, helmets and other labor protection supplies to prevent burns and other injuries.
Emergency treatment: When a boiler failure or emergency occurs, the fuel supply should be cut off immediately, the emergency safety valve should be activated to release the pressure, and relevant departments and personnel should be notified to handle the failure in a timely manner to prevent the accident from expanding.
Personnel training: Boiler operators should have certain professional knowledge and operating skills, and receive relevant training and assessments regularly to ensure that they can operate the equipment proficiently and respond to various emergencies.
To sum up, the boiler industry at the end of September 2024 has made significant progress in terms of market size, technology development and safety management. With the continuous advancement of technology and the increase of market demand, the boiler industry will usher in a broader development space.

2024-09-26 11:11:44

Master the latest boiler knowledge: September boiler definition, classification, operation and maint

1. Boiler definition and classification

Definition: Boiler refers to a device that uses various fuels, electricity or other energy sources to heat the liquid contained to a certain parameter and provide heat energy in the form of an external output medium. Its scope includes pressure steam boilers, pressure hot water boilers and organic heat carrier boilers.

Classification:

By purpose: industrial boilers (used for industrial production and heating, etc.), power station boilers (used for power generation), ship boilers (used for ship power), locomotive boilers (used for locomotive power), etc.
By type of working fluid and its output state: steam boiler, hot water boiler, special working fluid boiler, etc.
By equipment level: Class A, Class B, Class C, Class D boilers, different levels correspond to different parameter ranges.

2. Boiler composition and operation

Composition: Boilers are usually composed of boiler body, pipelines within the boiler range, safety accessories and instruments, auxiliary equipment and systems.

Operation instructions:

Boiler operation should strictly comply with relevant systems such as the "Electric Power Safety Work Regulations" and "Operation Regulations".
It is strictly forbidden to operate under overpressure and water shortage to ensure that the boiler operates in a safe, economical, stable and efficient state.
Take fire prevention measures in the boiler room and pay attention to safety hazards such as high temperature burns.

3. Boiler safety and management

Safety management:

The boiler must be equipped with special equipment safety management personnel and operators in accordance with regulations, and necessary safety education and assessment shall be carried out for them. Operators must be certified to work.
Establish safety management systems such as job responsibilities, hidden danger management, and emergency rescue, formulate operating procedures, and ensure the safe operation of special equipment.
Inspection and registration:

The boiler should obtain a use registration certificate before or within thirty days after it is put into use.
External inspection is carried out once a year, internal inspection is carried out once every two years, and water (resistance) pressure test is carried out according to the safety status of the boiler as needed.

4. Boiler maintenance and maintenance

Maintenance and maintenance:

Clean the boiler regularly to remove impurities in the steam-water system to prevent damage to the boiler and steam turbine.
The water inlet speed before the boiler is started should not be too fast, and the water inlet temperature should be controlled within a certain range to avoid equipment damage.
During the shutdown period, the boiler should be maintained, such as using wet protection or dry protection to prevent boiler corrosion.

5. Boiler energy saving and efficiency improvement

Energy-saving measures:

Strengthen combustion, improve combustion efficiency, and reduce incomplete combustion heat loss.
Reasonable air distribution to reduce smoke exhaust loss.
Ensure the quality of coal used in the boiler and reduce the heat loss of incomplete combustion of solids.
Efficiency improvement:

Adopt advanced combustion technology and equipment to improve the thermal efficiency of the boiler.
Strengthen operation analysis, optimize operation parameters, and maintain the best combustion operation conditions.
Strengthen inspection and maintenance work to ensure that the boiler operates in a safe, economical, stable and efficient state for a long time.

6. Boiler technology development trend

With the advancement of science and technology and the improvement of environmental protection requirements, boiler technology is also developing continuously. In the future, boiler technology will pay more attention to the development of high efficiency, environmental protection, and intelligence. For example, developing new combustion technologies, improving the level of automation control of boilers, and strengthening waste heat recovery and utilization will all help improve the efficiency and environmental performance of boilers.

In summary, as an important thermal energy equipment, boilers play an important role in industrial production, power generation and other fields. In order to ensure the safe operation and efficient use of boilers, it is necessary to continuously strengthen safety management, maintenance, energy conservation and consumption reduction, etc. At the same time, it is also necessary to pay attention to the latest developments in boiler technology, actively introduce and apply new technologies and equipment, and promote the continuous progress and development of boiler technology.

2024-09-20 10:59:15

The latest boiler related knowledge on September 11, 2024

1. Current status of boiler industry market development

Market size: According to data from Shangpu Consulting Group, the market size of China's boiler manufacturing industry continues to expand. In 2022, the market size reached about 220 billion yuan, an increase of 8.9% year-on-year, accounting for 28.6% of the global boiler manufacturing market, ranking first in the world. It is estimated that the annual market size in 2023 will reach about 240 billion yuan, a year-on-year increase of 9.1%. With the continuous advancement of technology and the increase in market demand, the scale of the boiler market will continue to expand in the next few years.

Policy promotion: In order to promote the development of the industrial boiler industry, my country has successively issued a series of relevant policies. For example, the "Notice on Further Strengthening the Update and Upgrade of Energy-Saving Standards and the Implementation of Application" issued by the National Development and Reform Commission and the State Administration for Market Regulation proposed to accelerate the revision of mandatory energy consumption limit standards for petrochemical, chemical, steel, non-ferrous metals, building materials, machinery and other industries, and improve the mandatory energy efficiency standards for key energy-consuming products and equipment such as industrial boilers. In addition, provinces and cities have also actively responded to national policy planning to promote the green, low-carbon and efficient development of the industrial boiler industry.
Energy structure optimization: With the proposal of the "dual carbon" goal, clean energy will further become the mainstream heating energy for boilers. The application proportion of natural gas boilers and electric boilers will steadily increase, and biomass boilers will also rise steadily. At the same time, electric boilers, molten salt boilers and systems with heat storage functions will increase their share in clean heating in the future due to the economy, safety and convenience brought by low-peak electricity prices and solar energy.

2. Boiler technology innovation and patents

Energy-saving technology: Modern boilers focus on energy conservation and environmental protection, and adopt high-efficiency combustion technology and waste heat recovery technology to improve energy utilization efficiency and reduce energy waste and environmental pollution. For example, the patent for "a mid-end steam condensate condensation recovery and steam-water separation process" applied by Guangxin Technology Co., Ltd. significantly improves the thermal efficiency of the boiler by increasing the recovery rate of steam condensate.
Intelligent control: Intelligent control systems have been widely used in boilers, realizing automatic adjustment and monitoring, and improving operational convenience and safety. The application of these technologies not only improves the operating efficiency of boilers, but also reduces labor costs and maintenance costs.

3. Development trend of the boiler industry


High efficiency and energy saving: With the advancement of environmental protection and energy-saving policies, high efficiency and energy saving will become an important development direction of the boiler industry. In the future, boilers will pay more attention to improving thermal efficiency, reducing energy consumption and reducing emissions.
Intelligentization: Digital and intelligent technologies will be more widely used in the design, manufacture, operation and maintenance of boilers to improve the efficiency and safety of boilers. Intelligent boilers will have stronger adaptive capabilities and remote monitoring capabilities to achieve more precise control and management.
Clean: The proportion of clean energy boilers will continue to rise, and coal-fired boilers, especially small-capacity coal-fired industrial boilers, will gradually withdraw from the market. Clean energy boilers such as gas boilers and electric boilers will be more widely used.
Large-scale: Large-capacity industrial boilers have an increasing share in the product structure due to their relatively higher thermal efficiency, safety balance and other characteristics. In the future, large-scale will become one of the important directions for the development of industrial boilers.

4. Market competition in the boiler industry

There is fierce market competition in the boiler industry, and domestic brands such as Harbin Boiler, DEC Dongfang Electric, and Shanghai Electric have a high market share and brand influence. With the increasingly stringent environmental protection regulations and the intensification of market competition, enterprises continue to increase investment in technological innovation and R&D to improve product performance and efficiency. At the same time, the boiler industry chain involves multiple links, and the upstream raw material supply, midstream production and manufacturing, and downstream application fields together constitute a complete industrial chain system.

In short, as an important part of China's industry, the boiler industry is developing towards high efficiency, energy saving, intelligence and environmental friendliness. In the future, with the continuous advancement of technology and the increase in market demand, the boiler industry will usher in a broader development space.

2024-09-12 08:45:50

Overview of the latest boiler knowledge in September

With the arrival of autumn, the boiler industry has also ushered in new technological developments and policy orientations. This article will provide an overview of the latest boiler knowledge in September from the aspects of technological innovation, policy impact, energy conservation and environmental protection, and safety supervision.

1. Technological innovation and application

In September, technological innovation in the boiler industry continued to develop in depth. The application of intelligent technology has become a hot spot in the boiler industry. By installing sensors, data acquisition equipment and advanced algorithms, the intelligent monitoring system can realize real-time monitoring and analysis of key parameters of boiler operation, and improve the safety and reliability of boilers. The application of non-contact monitoring technologies such as infrared thermal imagers is also becoming increasingly widespread. These technologies not only improve monitoring efficiency, but also reduce the inconvenience caused by boiler shutdown and disassembly.

In addition, automatic control systems have gradually become mainstream. By installing sensors and actuators and equipping them with advanced control algorithms, the level of automatic control of boilers has been greatly improved, reducing the risk of human operating errors. The application of visual recognition technology has also further improved the safety control level of boilers, and can detect and identify boiler water levels, combustion conditions and pipeline connections in real time.

2. Policy influence and orientation

In September, the boiler industry continued to be influenced and promoted by national policies. The "Guiding Opinions on Coordinating Energy Conservation and Carbon Reduction and Recycling and Accelerating the Renovation of Products and Equipment in Key Areas" jointly issued by the National Development and Reform Commission and nine other departments and its accompanying "Guidelines for the Implementation of Boiler Renovation and Recycling (2023 Edition)" have pointed out the direction for the development of the boiler industry. These policies emphasize the need to continuously improve the supply capacity of high-efficiency and energy-saving boilers, orderly implement energy-saving and carbon-reduction transformation of operating boilers, gradually eliminate inefficient and backward boilers, and strengthen the research and development and application of cutting-edge technologies.

At the same time, the State Administration for Market Regulation also issued the "Implementation Opinions on Implementing the Action Plan for Green, Low-Carbon and High-Quality Development of Boilers", which proposed a number of specific measures, including eliminating old and inefficient boilers, promoting boiler technology innovation, supporting boiler renovation, and implementing use management responsibilities. The implementation of these policies will significantly improve the operating efficiency of boilers and promote the green and low-carbon development of the boiler industry.

3. Energy Conservation, Environmental Protection and Green Development

Against the backdrop of global carbon neutrality, energy conservation, environmental protection and green development in the boiler industry are particularly important. Traditional fossil fuels such as coal and oil are gradually being replaced by clean energy such as natural gas, biomass and solar energy. Biomass boilers and solar boilers will occupy an important position in the future market with their renewability and environmental protection.

In addition, improving the energy efficiency of boilers is also an important direction for energy conservation and environmental protection. By strengthening combustion, reasonably distributing air, and ensuring the quality of coal, the incomplete combustion heat loss and smoke exhaust loss of the boiler can be significantly reduced, and the thermal efficiency of the boiler can be improved. At the same time, the use of advanced energy-saving technologies and equipment, such as waste heat recovery systems and high-efficiency heat exchangers, can also further reduce the energy consumption of the boiler.

4. Safety supervision and operation and maintenance management

In September, new progress has been made in the safety supervision and operation and maintenance management of boilers. With the development of intelligent technology, the safety monitoring and early warning system of boilers has been increasingly improved. By real-time monitoring of the operating parameters and status of the boiler, potential safety hazards can be discovered and warned in time to ensure the safe operation of the boiler.

In terms of operation and maintenance management, key links such as boiler startup, boosting, paralleling, fire suppression, fire raising, and switching equipment need to be strictly and carefully inspected and prepared. At the same time, strengthening the sense of responsibility and professional training of operators and improving their ability to grasp the operating parameters and status in real time are also important measures to ensure the safe and efficient operation of boilers.

In addition, regular maintenance and upkeep of the boiler is also essential. By regularly checking and replacing wear parts, cleaning up ash and slag, the boiler can be kept in good operating condition and its service life can be extended.

Conclusion

In September, the boiler industry has made new progress in technological innovation, policy guidance, energy conservation and environmental protection, and safety supervision. In the future, with the continuous development of science and technology and the continuous promotion of policies, the boiler industry will develop in a more intelligent, green and efficient direction.

2024-09-05 15:22:17

Boiler Craftsmanship·Fiery Watcher: Painting a Poem of the Years of Perfection

1. Circulation rate of circulating fluidized bed boiler

Definition: The circulation rate refers to the ratio of the amount of material (mainly ash particles) entering the CFB boiler to the amount of fuel required for combustion in the furnace. It reflects the number and degree of circulation of the material in the furnace.

Influencing factors:


Separator efficiency: The higher the separator efficiency, the more ash particles are recovered and the higher the circulation rate.
Fuel particle size: Small particle size, more fly ash, large circulation rate.
Fuel ash content: High ash content, more ash particles produced, large circulation rate.
Boiler load: Load reduction, flue gas flow rate reduction, circulation rate reduction.

2. Reasons for closing the economizer recirculation door of drum boiler

Closing the recirculation door is to prevent cracks caused by uneven boiler water temperature and uneven heating of the recirculation pipe metal, while ensuring the normal operation of the economizer.

3. Chemical cleaning of new and overhauled boilers

Chemical cleaning is to remove impurities such as grease, iron filings, welding slag, etc. generated during manufacturing, transportation, installation and maintenance to prevent these impurities from damaging the boiler and turbine.
 

 

4. Boiler blowpipe

Blowpipe is to use the steam generated by the boiler itself to physically clean the steam-water system and remove the residues in the equipment and pipelines that cannot be cleaned by chemical cleaning.

5. Time and temperature regulations for water filling before boiler start-up

The time and temperature for water filling are stipulated to prevent the expansion difference between the drum and the connecting pipe due to uneven heating, causing damage to the equipment.

6. Common maintenance methods for boilers

Wet protection: prevent corrosion by adding chemical agents.
Dry protection: keep dry by drying or placing desiccant.

7. Reasons for deterioration of steam quality

Steam carries water: impurities in boiler water are carried by steam.
Steam dissolves salt: steam dissolves part of the salt under high pressure.

8. Low-temperature corrosion of the tail heating surface

 

 
Since the sulfur in the fuel burns to generate SO3, it combines with the water vapor in the flue gas to generate sulfuric acid vapor, which condenses on the low-temperature heating surface and causes corrosion.

9. Emergency shutdown situations

Including many serious situations such as drum water level exceeding the limit, damage to all water level gauges, pipeline explosion, tail re-combustion, fan shutdown, etc.

10. Reasons for monitoring exhaust gas temperature

Exhaust gas temperature is the main part of boiler heat loss and can reflect the operating status of the boiler, so it needs to be monitored.

11. Pressure increase, pressure relief speed and qualified standards for water pressure test

The speed and qualified standards for pressure increase and pressure relief are specified to ensure the safety of the test process and accurately evaluate the sealing of pressure-bearing parts.

12. Flushing steps for drum water level gauge

The accuracy and cleanliness of the water level gauge are ensured through three steps: water side flushing, steam side flushing and steam-water co-flushing.

13. Reasons for not using water spray cooling for reheat steam temperature regulation

Water spray cooling will reduce the thermal efficiency of the unit and limit the working capacity of the high-pressure cylinder.

14. Steps for reheater water pressure test

The preparation, pressure increase, inspection and pressure reduction process of the reheater water pressure test are described in detail.

15. Main factors affecting wear rate

 

 
Including the flow rate, concentration, particle size, hardness of flue gas materials and the surface shape and hardness of the worn components.

16. Reasons for controlling the bed temperature between 850-950℃

This temperature range can avoid ash melting, improve desulfurization efficiency, reduce nitride generation and alkali metal sublimation.

17. Phenomenon of coking on the bed surface of circulating fluidized bed boiler

Including a sharp increase in bed temperature, a decrease in oxygen content, changes in fan current and other manifestations.

18. Measures to avoid coking during startup

 

 
Including checking the hood opening, controlling the heating rate, ensuring uniform bed temperature, and slowly feeding coal.

19. Factors affecting the load of fluidized bed boilers

Including coal quality, bed temperature, bed pressure, oxygen content and air ratio, feed water temperature and cleanliness of the tail heating surface.

20. Methods for protecting castings during startup

Control temperature changes, furnace pressure changes and coal feeding to ensure the safety of castings.

Through these detailed explanations and supplements, you can have a more comprehensive understanding of the operation, maintenance and care of circulating fluidized bed boilers and drum boilers.

2024-08-30 09:12:01

New trends in boiler technology in August: Innovation and green go hand in hand

With the enthusiasm of summer in August, the field of boiler technology has also ushered in a new craze. The emergence of a series of innovative technologies and green solutions is leading the future development of the industry. During this month, boiler technology not only made significant breakthroughs in improving energy efficiency, but also took solid steps in environmental protection and intelligence.

 

Ultra-efficient boiler technology leads the way

In August, several boiler manufacturers announced the latest developments in ultra-efficient boiler technology. These new boilers achieve higher thermal efficiency by optimizing the combustion process, improving heat transfer efficiency and using advanced control systems. In particular, the steam parameters of some boilers using ultra-supercritical technology have been further improved, bringing the power generation efficiency to unprecedented heights and bringing cleaner and more efficient energy solutions to the power industry.

 

The popularity of clean energy boilers is accelerating

As the global demand for clean energy continues to grow, August has become a critical period for the accelerated popularity of clean energy boilers. Natural gas boilers continue to become the mainstream of the market due to their low emissions and high efficiency. At the same time, renewable energy utilization technologies such as biomass boilers have also made significant progress. More and more companies have begun to explore the conversion of agricultural waste, forestry waste and other biomass resources into boiler fuel, realizing resource recycling and Environmental sustainability.

Intelligent boiler technology ushered in new breakthroughs

In the field of intelligence, boiler technology has also ushered in new breakthroughs. In August, a number of companies launched intelligent boiler control systems that integrate advanced technologies such as artificial intelligence and big data. These systems can monitor the operating status of the boiler in real time, accurately control the combustion process, and automatically adjust combustion parameters according to load changes, thereby optimizing the boiler operation. In addition, smart boilers also have functions such as fault diagnosis and remote monitoring, which greatly improve the reliability and maintenance efficiency of the boiler.

Continuous innovation in environmental protection technology

 

 
In terms of environmental protection, boiler technology continues to innovate. In August, some new environmentally friendly technologies such as low-temperature plasma technology and carbon capture and storage technology received attention in the boiler field. These technologies are expected to bring revolutionary improvements to the environmental performance of boilers in the future. At the same time, some companies have also developed more efficient denitrification, desulfurization and dust removal technologies, allowing boilers to achieve more significant results in reducing pollutant emissions.

Conclusion

August is an important period for boiler technology innovation and green development. During this month, we not only saw the trend of ultra-efficient boiler technology, the accelerated popularization of clean energy boilers, and new breakthroughs in intelligent boiler technology, but also witnessed the continuous innovation of environmental protection technology. The emergence and application of these new technologies not only promote the rapid development of the boiler industry, but also make important contributions to the progress of global energy and environmental protection. We have reason to believe that boiler technology will usher in more brilliant development prospects in the days to come.

2024-08-19 16:06:50

 1/38
 
 1/38