Full analysis of energy-saving design knowledge of industrial boiler systems

Full analysis of energy-saving design knowledge of industrial boiler systems

As important energy conversion equipment, industrial boilers are widely used in chemical, textile, printing and dyeing, papermaking, food and other industrial sectors. However, their energy consumption is high, mainly in terms of fuel consumption, steam consumption and thermal system losses. With the rise in energy prices and the improvement of environmental protection requirements, the energy-saving design of industrial boilers has become one of the key measures for enterprises to reduce costs and improve competitiveness. The following is a comprehensive analysis of the energy-saving design knowledge of industrial boiler systems.

1. Energy-saving policies and standards

The state has issued a series of industrial boiler energy-saving policies and standards, such as the "Energy Conservation Law of the People's Republic of China" and the "Industrial Boiler Energy Efficiency Limit Values ​​and Energy Efficiency Grades", requiring enterprises to take effective energy-saving measures to improve the energy efficiency of industrial boilers and promote energy conservation and rational use.

2. Fuel selection and optimization

Select high-efficiency fuels: Select fuels with high calorific value and low sulfur content to improve combustion efficiency.

Fuel processing and transportation optimization: Pre-treat the fuel by crushing, screening, drying, etc. to improve the combustion performance of the fuel.

Fuel ratio optimization: According to the boiler load and fuel characteristics, reasonably adjust the fuel ratio to reduce the combustion cost.

3. Combustion system optimization

Select high-efficiency burners: improve combustion speed and combustion efficiency.
Burner optimization adjustment: adjust the relative position of the burner and the furnace, improve the aerodynamic field, and improve combustion efficiency.
Aerodynamic field optimization: adopt advanced combustion control systems to achieve automatic adjustment and control of the combustion process.

4. Waste heat recovery and utilization

Install waste heat recovery equipment: such as waste heat boilers, heat exchangers, etc., to convert waste heat into useful heat energy for heating, power generation, production processes, etc., to improve energy utilization efficiency.
Waste heat recovery system optimization design: reduce system resistance and improve waste heat recovery efficiency.

5. Heat energy transmission and distribution optimization

Adopt advanced heat energy transmission and distribution technology to reduce energy loss and improve energy utilization efficiency. For example, optimize the thermal system, improve thermal energy utilization rate, and reduce heat loss.

6. Equipment energy-saving transformation

Combustion system transformation: adopt advanced control systems to achieve boiler automation and reduce manual operation errors.
Thermal system transformation: optimize the thermal system and improve thermal energy utilization rate.
Energy-saving transformation of boiler equipment: Rationally design the insulation layer, use insulation materials with low thermal conductivity, high temperature resistance and corrosion resistance to reduce heat loss.

7. Energy-saving technology for operation and management

Remote monitoring: Use Internet technology to achieve remote monitoring and fault diagnosis to reduce maintenance costs.
Automation control: Use advanced automation control technology to achieve automatic adjustment of boiler combustion, water supply, slag discharge and other systems to improve operation efficiency.
Intelligent monitoring: By installing sensors and data acquisition systems, real-time monitoring of boiler operating parameters is provided to provide data support for optimized operation.

8. Energy-saving case analysis

Take a steel company as an example. The company effectively improves energy utilization efficiency and reduces energy consumption and costs by recycling the waste heat generated by industrial boilers and using the waste heat for power generation or heating. At the same time, by strengthening energy measurement and statistics, timely discovering and solving energy waste problems, and further improving energy utilization efficiency.

9. Development trend of energy-saving technology

Policy support: The government has introduced a series of energy-saving and emission reduction policies to encourage enterprises to carry out energy-saving transformation and technological innovation.
Market demand: With the improvement of environmental awareness, the market demand for energy-saving products continues to increase.
Technological innovation: Enterprises need to continuously carry out technological innovation and research and development to improve the competitiveness and market share of their products.
Capital investment: Energy-saving transformation requires a large amount of capital investment. Enterprises need to rationally plan the use of funds to ensure the smooth implementation of the project.
In summary, the energy-saving design of industrial boiler systems involves many aspects, including policies and standards, fuel selection and optimization, combustion system optimization, waste heat recovery and utilization, heat transmission and distribution optimization, equipment energy-saving transformation, and operation and management energy-saving technology. Enterprises should formulate detailed energy-saving transformation plans based on their actual conditions, clarify transformation goals, time arrangements and budgets, etc., to improve the energy efficiency level of industrial boilers, reduce operating costs, and achieve sustainable development.

company news