Boiler Knowledge

Composite smoke pipe, welded pipe and conjugate pipe: Overview of characteristics and applications

1. Composite smoke pipe

Composite smoke pipe, also known as fireproof composite smoke exhaust duct, is mainly composed of two layers of metal thin plates inside and outside and a middle insulation material layer.

Material:
Inner thin plate: usually galvanized plate or stainless steel plate, these materials have excellent corrosion resistance and high temperature resistance.
Outer thin plate: mostly aluminum-zinc-magnesium alloy plate or color steel plate, these materials have good corrosion resistance and aesthetics.
Intermediate insulation material: can be glass wool, aluminum silicate plate or rock wool, etc., these materials have excellent thermal insulation and fireproof properties.
Features:
Good fireproof performance: The fireproof grade of the composite smoke pipe generally reaches A2 level, and it can withstand high-temperature smoke.
Low thermal conductivity: The presence of the middle insulation material makes the composite smoke pipe have a lower thermal conductivity, avoiding the problem of excessive indoor and outdoor temperature gradient.
Good corrosion resistance: The material selection of the inner and outer two layers of metal thin plates makes the composite smoke pipe have good corrosion resistance.
Various connection methods: flange connection, bayonet connection, metal hose connection, etc. can be used for connection, which has greater flexibility.
Wide range of applications: suitable for smoke exhaust, ventilation and air supply systems.

2. Welded pipe

Welded pipe is a steel pipe made by welding steel plates or strips after curling and forming.

Classification:
According to the production method: it can be divided into arc welded pipes, resistance welded pipes, (high frequency, low frequency) gas welded pipes, furnace welded pipes, etc. Smaller diameter welded pipes use straight seam welding, while large diameter welded pipes mostly use spiral welding.
According to the shape of the steel pipe: it can be divided into round welded pipes and special-shaped (square, rectangular, etc.) welded pipes.
According to the material and use: it can be divided into welded steel pipes for fluid transportation in mines, galvanized welded steel pipes for low-pressure fluid transportation, and electric welded steel pipes for belt conveyor rollers.
Features:
Strength: Although the strength of welded steel pipes is lower than that of seamless steel pipes, they are still widely used.
Delivery length: Generally, welded pipes are used to transport low-pressure fluids. The delivery length is usually 4~10m, and fixed length (or multiple length) is often required for delivery.
Wall thickness: According to the specified wall thickness, welded pipes are divided into ordinary steel pipes and thickened steel pipes. Steel pipes are divided into threaded and non-threaded types according to the form of pipe ends.
Application range:
Widely used in tap water projects, petrochemical industry, chemical industry, power industry, agricultural irrigation, urban construction and other fields.
According to function, it can be divided into liquid transportation (water supply, drainage), gas transportation (gas, steam, liquefied petroleum gas), and structural use (pile pipes, bridges, docks, roads, and building structure pipes).

3. Conjugate pipe (taking HDPE conjugate pipe as an example)

HDPE (High Density Polyethylene) is a high-density polyethylene with excellent chemical corrosion resistance, high strength and stiffness, good wear resistance and low water absorption. HDPE conjugate pipe is a pipe made of HDPE material.

Features:
Chemical corrosion resistance: It can resist the corrosion of various acids, alkalis, salt solutions and various chemical substances, and can operate stably in various harsh environments.
High strength and rigidity: It can withstand greater pressure and heavy loads, and is not easy to deform or break.
Abrasion resistance: It can resist the impact and wear of particles, reducing the frequency of pipeline maintenance and replacement.
Low water absorption: It is not easy to be affected by moisture, and can still maintain good performance in a humid environment.
Good welding performance: Pipeline connection can be carried out by hot melt connection and other methods, with high connection strength, ensuring the sealing and reliability of the pipeline system.
Application range:
Commonly used in water supply, drainage, natural gas transportation and industrial fluid transportation.
It is also widely used in underground drainage systems, because HDPE conjugate pipes have low water absorption and good chemical corrosion resistance, which are suitable for use in humid underground environments that are easily corroded by chemical substances.
In short, composite smoke pipes, welded pipes and conjugate pipes have their own characteristics and are widely used in different fields. Which pipe material to choose depends on the specific application scenario and needs.

2024-12-23 09:48:05

A practical guide to the use and maintenance of 50-ton steam boilers

About the use of 50-ton steam boilers, the following is a detailed introduction from the aspects of pre-operation preparation, startup steps, operation monitoring, shutdown operation and daily maintenance:

1. Pre-operation preparation

Check the appearance of the boiler: Make sure the appearance of the boiler is intact, without water leakage, air leakage, etc.
Check the fuel supply: Ensure that the supply of fuels such as liquefied gas and natural gas is sufficient and without leakage.
Cleaning work: Clean the flue and water pipes of the boiler to ensure unobstructed; clean the ash and residue in the furnace.
Check the valve: Make sure that all valves are closed well, especially the safety valve, pressure gauge, water level gauge and other safety devices should be in normal working condition.
Check the steam system: Check whether the various instruments and equipment of the steam system are operating normally.
Check the power supply, voltage, and water source: Ensure that the power supply and voltage are stable and the water supply is normal.

2. Startup steps

Add water: Open the water supply valve and inject water into the steam boiler. At the same time, observe the water level gauge to ensure that the water level returns to the normal water level line. Note that the water quality should be clean and avoid using water with too high hardness.
Start the induced draft fan: introduce air into the furnace.
Ignition and combustion: put in fuel and ignite the burner. A series of checks need to be carried out before ignition, such as opening the fuel system pressure gauge valve and the instrument air system, to ensure that all indicators are normal.
Warm up the pipe and increase the pressure: after starting the steam boiler, first warm up the pipe, then increase the pressure, and then ignite. This process needs to be carried out in sequence and cannot be reversed.

3. Operation monitoring

Real-time monitoring: real-time monitoring of parameters such as steam pressure, water level, and gas concentration, and adjust according to actual conditions.
Drainage: Regularly drain sewage to prevent pipeline blockage. When draining sewage, pay attention to the pressure discharge between 0.1MPa and 0.15MPa.
Keep clean: regularly remove ash and coke in the furnace and smoke pipe of the steam boiler to keep the combustion unobstructed.
Control fuel supply: strictly control the supply of fuel to avoid excessive or insufficient fuel and maintain stable combustion.

4. Shutdown operation

Reduce steam supply: gradually reduce the steam supply and wait for the pressure to drop to a safe range.
Close the valve: Close the main steam valve and water supply valve to stop the flow of steam and water.
Stop combustion: Turn off the burner and stop the supply of fuel.
Turn off the induced draft fan: Stop the entry of air.
Wait for cooling: Wait for the steam boiler to cool down before cleaning and repairing.

5. Daily maintenance

Regular inspection: The boiler and its safety accessories (such as safety valves and pressure gauges) need to be inspected regularly, and equipment that has not been inspected regularly shall not be used.
Safety accessory inspection: The safety valve needs to be calibrated regularly, and the pull rod should be pulled at least once a month to check its flexibility.
Water quality monitoring: Regularly monitor and test the water quality of the boiler to ensure that the water quality meets the requirements. Water treatment and water replenishment operations are carried out when necessary.
Professional training: Operators must be trained and obtain the "Special Equipment Operator Certificate" to ensure that they can operate proficiently and respond to emergencies.
In summary, the use of a 50-ton steam boiler involves many aspects and links, and operators need to have professional knowledge and operating skills. In actual operation, the operating procedures and safety systems should be strictly followed to ensure the safe and efficient operation of the boiler. At the same time, it is also necessary to strengthen daily maintenance and maintenance work to extend the service life of the boiler and improve economic benefits.

2024-12-18 16:30:13

Full analysis of energy-saving design knowledge of industrial boiler systems

As important energy conversion equipment, industrial boilers are widely used in chemical, textile, printing and dyeing, papermaking, food and other industrial sectors. However, their energy consumption is high, mainly in terms of fuel consumption, steam consumption and thermal system losses. With the rise in energy prices and the improvement of environmental protection requirements, the energy-saving design of industrial boilers has become one of the key measures for enterprises to reduce costs and improve competitiveness. The following is a comprehensive analysis of the energy-saving design knowledge of industrial boiler systems.

1. Energy-saving policies and standards

The state has issued a series of industrial boiler energy-saving policies and standards, such as the "Energy Conservation Law of the People's Republic of China" and the "Industrial Boiler Energy Efficiency Limit Values ​​and Energy Efficiency Grades", requiring enterprises to take effective energy-saving measures to improve the energy efficiency of industrial boilers and promote energy conservation and rational use.

2. Fuel selection and optimization

Select high-efficiency fuels: Select fuels with high calorific value and low sulfur content to improve combustion efficiency.

Fuel processing and transportation optimization: Pre-treat the fuel by crushing, screening, drying, etc. to improve the combustion performance of the fuel.

Fuel ratio optimization: According to the boiler load and fuel characteristics, reasonably adjust the fuel ratio to reduce the combustion cost.

3. Combustion system optimization

Select high-efficiency burners: improve combustion speed and combustion efficiency.
Burner optimization adjustment: adjust the relative position of the burner and the furnace, improve the aerodynamic field, and improve combustion efficiency.
Aerodynamic field optimization: adopt advanced combustion control systems to achieve automatic adjustment and control of the combustion process.

4. Waste heat recovery and utilization

Install waste heat recovery equipment: such as waste heat boilers, heat exchangers, etc., to convert waste heat into useful heat energy for heating, power generation, production processes, etc., to improve energy utilization efficiency.
Waste heat recovery system optimization design: reduce system resistance and improve waste heat recovery efficiency.

5. Heat energy transmission and distribution optimization

Adopt advanced heat energy transmission and distribution technology to reduce energy loss and improve energy utilization efficiency. For example, optimize the thermal system, improve thermal energy utilization rate, and reduce heat loss.

6. Equipment energy-saving transformation

Combustion system transformation: adopt advanced control systems to achieve boiler automation and reduce manual operation errors.
Thermal system transformation: optimize the thermal system and improve thermal energy utilization rate.
Energy-saving transformation of boiler equipment: Rationally design the insulation layer, use insulation materials with low thermal conductivity, high temperature resistance and corrosion resistance to reduce heat loss.

7. Energy-saving technology for operation and management

Remote monitoring: Use Internet technology to achieve remote monitoring and fault diagnosis to reduce maintenance costs.
Automation control: Use advanced automation control technology to achieve automatic adjustment of boiler combustion, water supply, slag discharge and other systems to improve operation efficiency.
Intelligent monitoring: By installing sensors and data acquisition systems, real-time monitoring of boiler operating parameters is provided to provide data support for optimized operation.

8. Energy-saving case analysis

Take a steel company as an example. The company effectively improves energy utilization efficiency and reduces energy consumption and costs by recycling the waste heat generated by industrial boilers and using the waste heat for power generation or heating. At the same time, by strengthening energy measurement and statistics, timely discovering and solving energy waste problems, and further improving energy utilization efficiency.

9. Development trend of energy-saving technology

Policy support: The government has introduced a series of energy-saving and emission reduction policies to encourage enterprises to carry out energy-saving transformation and technological innovation.
Market demand: With the improvement of environmental awareness, the market demand for energy-saving products continues to increase.
Technological innovation: Enterprises need to continuously carry out technological innovation and research and development to improve the competitiveness and market share of their products.
Capital investment: Energy-saving transformation requires a large amount of capital investment. Enterprises need to rationally plan the use of funds to ensure the smooth implementation of the project.
In summary, the energy-saving design of industrial boiler systems involves many aspects, including policies and standards, fuel selection and optimization, combustion system optimization, waste heat recovery and utilization, heat transmission and distribution optimization, equipment energy-saving transformation, and operation and management energy-saving technology. Enterprises should formulate detailed energy-saving transformation plans based on their actual conditions, clarify transformation goals, time arrangements and budgets, etc., to improve the energy efficiency level of industrial boilers, reduce operating costs, and achieve sustainable development.

2024-12-13 15:56:10

Application and function analysis of boilers in lighthouse factories

As an energy conversion device, boilers have a wide range of applications in industry, but in lighthouse factories, their use is limited by specific environments and needs. The following is a detailed analysis of the possible applications and functions of boilers in lighthouse factories:

1. Overview of the Lighthouse Factory

Lighthouse factories usually refer to factories that have reached a high level of industrial automation, intelligence and digitalization. These factories have achieved significant improvements in production efficiency and significant reductions in costs through the use of advanced technology and innovative management methods. Lighthouse factories are often located in specific geographical locations, such as at sea or other special terrains, which makes the selection and use of their equipment need to take into account the particularities of the environment.

2. Potential uses of boilers in lighthouse factories

Electricity supply:
Although coal-fired boilers are less suitable in lighthouse plants, other types of boilers, such as oil or natural gas boilers, can still be used to generate electricity. These boilers release thermal energy by burning fuel, heating water into high-temperature and high-pressure steam, which then drives a steam turbine to generate electricity.
Heating and Cooling:
In lighthouse factories, boilers can be used for heating systems, especially during the cold season. The high-temperature hot water or steam generated by the boiler can be used to deliver heat energy to the building to achieve heating. At the same time, in some cases, the boiler can also be used as a condenser for the refrigeration system, discharging heat to the environment.
Industrial wastewater treatment:
The steam generated by the boiler can be used to drive wastewater treatment equipment, such as aerators, mixers, etc., to improve the efficiency and quality of wastewater treatment. This is an important environmental measure for the lighthouse factory.
Auxiliary production process:
In some lighthouse factories, boilers may be used in auxiliary production processes such as metal processing, ceramic production, etc. These processes require high-temperature steam or hot water to heat or support process equipment.

3. Limitations of boilers in lighthouse factories

Environmental pollution:
Coal-fired boilers easily produce large amounts of pollutants and harmful substances such as carbon dioxide, which pollute and impact the environment of the lighthouse factory. Therefore, when using boilers in lighthouse factories, you need to choose fuel types with better environmental performance, such as natural gas or oil.
Installation and maintenance:
Lighthouse factories are usually located at sea or other special terrain, which makes the installation and maintenance of boilers relatively difficult. Therefore, when choosing a boiler, you need to consider its ease of installation and maintenance.
Energy efficiency:
Lighthouse factories often have high requirements for energy efficiency. When selecting a boiler, you need to pay attention to indicators such as its energy efficiency ratio and thermal efficiency to ensure that you can reduce energy consumption and costs while meeting production needs.

4. Conclusion

In summary, boilers have a variety of potential uses in lighthouse factories, including power supply, heating and cooling, industrial wastewater treatment and auxiliary production processes. However, due to the special environment and demand constraints of the lighthouse factory, factors such as environmental pollution, installation and maintenance, and energy efficiency need to be considered when selecting and using boilers. Therefore, the lighthouse factory should choose the appropriate boiler type and configuration plan based on its actual situation and needs.

2024-12-09 10:42:17

Boiler technology innovation promotes green development of pharmaceutical industry

With the arrival of the end of November, the application of boiler technology in the pharmaceutical industry has once again become the focus of industry attention. In recent years, with the continuous advancement of the country's energy-saving and environmental protection policies, the boiler industry is undergoing a transformation from traditional coal-fired boilers to clean energy boilers. This transformation not only helps to reduce pollutant emissions, but also promotes technological progress and industrial upgrading in the boiler industry. In the pharmaceutical industry, the innovation of boiler technology has also injected new vitality into the green development of the industry.

1. Wide application of clean energy boilers

In the pharmaceutical industry, traditional coal-fired boilers are gradually being eliminated due to their high energy consumption and high emissions. They are replaced by clean energy boilers such as gas boilers and electric boilers. These new boilers are not only efficient, energy-saving, and environmentally friendly, but also meet the high demand for thermal energy in the pharmaceutical industry. In particular, gas boilers, with their high combustion efficiency and low emissions, have become the preferred thermal energy supply equipment for pharmaceutical companies.

2. The introduction of intelligent and automated technologies

With the continuous development of intelligent and automated technologies, the operation and management of boilers has become more efficient, convenient, and safe. In the pharmaceutical industry, the intelligent boiler system can monitor the operating parameters of the boiler in real time to ensure that the boiler operates in a safe and efficient state. At the same time, automation technology can also realize remote control and automatic adjustment of boilers, greatly reducing the difficulty and cost of manual operation.

3. The important role of steam generators in pharmaceutical production

As an important equipment on the pharmaceutical production line, steam generators provide steam heat energy for drug purification, distillation, heating, drying, etc. In the pharmaceutical process, the high-temperature clean steam generated by the steam generator can stably heat the reaction tank containing drugs, accelerate the mixing reaction of drugs, ensure the high quality of drugs and shorten the production time. In addition, the steam generator also has the advantages of free registration, free certificate, one-button start, and intelligent full-automatic operation, which perfectly replaces traditional boilers.

4. Future development trend of boiler technology

In the future, boiler technology will continue to develop in the direction of high efficiency, energy saving and environmental protection. On the one hand, with the popularization of clean energy and the application of intelligent technology, the operating efficiency and environmental protection performance of boilers will be further improved; on the other hand, the boiler industry will pay more attention to technical innovation and transformation in energy conservation and emission reduction, resource recovery and recycling, and promote the industry to develop in the direction of green and environmental protection.

In the pharmaceutical industry, the innovation of boiler technology will provide strong support for the green development of the industry. In the future, with the continuous advancement of boiler technology and the expansion of its application scope, the pharmaceutical industry will achieve a more efficient, energy-saving and environmentally friendly production method, and make greater contributions to human health.

In summary, the innovation of boiler technology is an important force in promoting the green development of the pharmaceutical industry. In the future, with the popularization of clean energy and the application of intelligent technology, boiler technology will play a more important role in the pharmaceutical industry.

2024-11-29 16:39:56

Boiler room knowledge full analysis

As the core facility for heat energy supply, boiler room is widely used in many fields such as heating and industrial production. This article will give you a detailed introduction to the working principle, equipment composition, safety setting requirements and current development trends of the boiler industry.

1. Working principle of boiler room

The working principle of boiler room is mainly based on the combustion of fuel and the transfer of heat energy. The following are the basic steps of boiler room work:

Fuel combustion: The boiler room uses different types of fuels such as coal, fuel oil, and natural gas. These fuels are ignited in the combustion chamber and release a large amount of heat energy.
Heat energy conduction: The high-temperature flue gas generated by combustion is transferred to the circulating medium (usually water or steam) in the boiler through the heat conduction of the boiler furnace wall.
Heating medium: Water or steam is used as a heat transfer medium and flows through the pipe system in the boiler. The heat energy is transferred to the water or steam to increase its temperature.
Energy conversion: The heat energy generated by combustion is eventually converted into mechanical energy or thermal energy and used for steam supply in heating or other industrial processes.
Steam circulation: After the water is heated and converted into steam, the steam is pushed into the heat transfer loop and circulates throughout the boiler system. The steam further transfers heat to the medium to be heated, then is cooled and turned into water, and returns to the boiler for circulation again.

2. Equipment composition of the boiler room

The equipment in the boiler room includes the boiler body and auxiliary equipment.

Boiler body: mainly includes steam boiler, furnace, steam superheater, economizer and air preheater. These components together constitute the basic structure of the boiler, realizing the combustion of fuel and the transfer of heat energy.
Auxiliary equipment:
Coal transportation and ash removal system: including conveyor and ash car, which are used for the transportation of fuel and the discharge of ash.
Supply and induced draft system: including blower, induced draft fan, chimney and dust collector, which are used to provide the required air for combustion and discharge flue gas.
Water and steam system: including feed water pump, water treatment equipment, water tank, steam cylinder and sewage desuperheating pool, which are used for water treatment and steam distribution.

3. Safety setting requirements of the boiler room

The safety setting requirements of the boiler room are strict to ensure the safety of equipment and personnel.

Equipment layout: The equipment in the boiler room should be easy to operate, pass and repair.
Lighting and ventilation: The boiler room should have sufficient lighting and good ventilation, as well as necessary cooling and antifreeze measures.
Prevent water accumulation: The boiler room should prevent water accumulation and ensure that the ground is flat and without steps.
Load-bearing structure: The load-bearing beams and columns of the boiler room should be at a certain distance from the boiler or other measures should be taken to prevent damage by high temperature.
Exit setting: There are at least two exits on each floor of the boiler room, located on both sides. For single-layer boilers with smaller areas, only one exit can be opened.
Door and window setting: The door leading to the outside of the boiler room should open outward and remain unobstructed during the operation of the boiler. The door of the studio or living room in the boiler room should open to the inside of the boiler room.
Lighting equipment: There should be sufficient lighting at the operating location and water level gauge, pressure gauge, thermometer, flow meter, etc. in the boiler room, and equipped with spare lighting equipment or tools.

4. Development trend of the boiler industry

At present, the boiler industry is undergoing a transformation from traditional coal-fired boilers to clean energy boilers.

Clean energy boilers: With the continuous advancement of the country's energy-saving and environmental protection policies, the market share of clean energy boilers such as gas boilers and electric boilers has continued to rise, which helps to reduce pollutant emissions.
Technological innovation: The application of advanced technologies such as water-cooled premixed combustion technology, flue gas condensation heat exchange technology and vacuum phase change heat exchange technology has improved the thermal efficiency and environmental performance of boilers.
Intelligence: The introduction of intelligent and automated technologies makes the operation of boilers more efficient and safe.
Market demand: With the in-depth advancement of industrialization and urbanization, and the improvement of residents' living standards, the demand for thermal energy continues to grow, which has promoted the stable development of the boiler industry.
In summary, as an important facility for thermal energy supply, the working principle, equipment composition and safety setting requirements of the boiler room are all crucial. At the same time, with the continuous development of the boiler industry, the application of clean energy boilers and intelligent technologies will become a future development trend.

2024-11-21 14:50:29

The use and advantages of condensing gas boilers

Condensing gas boilers, as modern, efficient, energy-saving and environmentally friendly heating equipment, have gradually become the main choice for natural gas energy-saving heating. It not only greatly improves operating efficiency, but also significantly reduces users' operating costs and brings considerable economic benefits. This article will explain in detail how to use a condensing gas boiler and its significant advantages.

How to use

Security check:
Before using a condensing gas boiler, a comprehensive safety check must be carried out. This includes checking whether each valve instrument is loose, whether the drain port and drain port are open, etc., to ensure that the various safety indexes of the boiler are at normal levels.
Water system connection and water filling:
After connecting the water system, inject water into the system and observe the water pressure changes on the pressure gauge inside the boiler. When the water pressure reaches the limited value range, stop water injection and check whether there is looseness or leakage at each waterway connection.
Power on and exhaust:
After turning on the power, press the power button to start the water pump and discharge the air from each heat exchanger coil. Or you can manually unscrew the manual exhaust valve at the front of the heat exchanger to exhaust. After exhausting, if the water pressure drops, water needs to be replenished until the water pressure reaches the working range.
Ignition operation:
After the smoke pipe is connected, connect the air source and perform ignition operation. Observe the red signal light on the sub-control board. The signal light will flash slowly after power is turned on, and will flash quickly after ignition is successful.
Parameter adjustment:
Under normal circumstances, the parameters of the condensing gas boiler have been adjusted before leaving the factory, and there is no need to make adjustments on site. However, if the local natural gas calorific value, air pressure or altitude changes, the combustion system must be analyzed and adjusted by professional technicians.

Advantages

High efficiency and energy saving:
The thermal efficiency of condensing gas boilers is as high as over 106%, far exceeding the domestic standard of about 94%. It recovers the heat energy in the flue gas by condensing the flue gas, greatly improving the thermal efficiency. The exhaust gas temperature is reduced to 5070°C, fully recovering the sensible heat in the flue gas and the latent heat of condensation of water vapor. Compared with traditional boilers (thermal efficiency is generally between 85% and 91%), it can save about 10% of gas.
Environmentally friendly cleaning:
The ultra-low carbon monoxide (CO) and nitrogen oxides (NOX) emissions of condensing gas boilers make them cleaner and more environmentally friendly, and can meet strict emission standards, such as Beijing’s 2017 boiler emission standards. More advanced condensing gas boilers use smokeless combustion technology, reducing nitrogen oxide emissions to more than 35mg/kwh.
Safe and reliable:
The condensing gas boiler is designed in full compliance with European safety requirements, and the combustion status is monitored throughout the process to eliminate the risk of excessive carbon monoxide. In addition, its powerful control system ensures that each boiler operates within an energy-saving range, increasing the safety of use.
Low exhaust smoke temperature:
The exhaust gas temperature of the condensing gas boiler is between 30°C and 70°C, and plastic pipes (such as PP, PVC) can be used, which further improves its energy-saving effect.
Precise temperature control:
Condensing gas boilers have precise temperature control capabilities, and the water temperature control accuracy can reach ±0.5°C, ensuring the comfort and stability of heating.
Economical and practical:
The high efficiency and energy saving characteristics of condensing gas boilers enable it to significantly reduce users' operating costs. In addition, due to its excellent environmental performance, users may also enjoy government environmental subsidies or preferential policies, further reducing usage costs.
In summary, condensing gas boilers have become the preferred equipment in modern heating systems due to their significant advantages such as high efficiency and energy saving, environmental protection and cleanliness, safety and reliability, low exhaust gas temperature, precise temperature control, economy and practicality. During use, users only need to operate according to specifications and perform regular maintenance and upkeep to ensure long-term stable operation and bring long-lasting and stable heating effects to users.

2024-11-12 10:44:13

T6 vacuum hot water boiler: the preferred solution for efficient, energy-saving and environmentally

In today's society, with the increasing awareness of environmental protection and the increasingly tense energy consumption, it is particularly important to choose an efficient, environmentally friendly and safe heating equipment. With its unique advantages and excellent performance, T6 vacuum hot water boiler has become the ideal choice for many users. This article will introduce in detail the use of T6 vacuum hot water boiler and its significant advantages.

1. How to use T6 vacuum hot water boiler

Device operation: Before the boiler is put into operation, a comprehensive inspection of the boiler and its ancillary equipment should be carried out, including mechanical integrity and safety, specifications and sealing of the piping system, grounding and insulation resistance of the electrical system, etc. Ensure all equipment complies with national standards and usage requirements.
Start-up and shutdown: Before starting, it is necessary to correctly drain the water, clean the boiler according to the operating instructions, and check the weather conditions. After startup, the operation should be carried out in strict accordance with the prescribed steps to avoid unauthorized adjustment of control parameters. When an abnormality is discovered during boiler operation, the boiler should be shut down immediately and the emergency shutdown device should not be used casually.
Daily operation: In daily use, active maintenance should be carried out, such as regular sewage discharge, inspection of safety valves and pressure gauges, etc. At the same time, pay attention to the surrounding environment and maintain good ventilation to avoid potential safety hazards. Parameters such as water temperature, water pressure, and electrical equipment protection must be managed in a standardized manner. Debris must not be piled around the boiler to keep the site dry and clean.
Emergency handling: In the event of an emergency, the boiler and corresponding supporting equipment should be shut down immediately, the fuel and power supply should be cut off, the boiler's emergency shutdown device, such as safety valves, etc. should be activated, and the alarm should be called immediately to seek assistance from relevant professionals.

2. Significant advantages of T6 vacuum hot water boiler

 

High efficiency and energy saving: T6 vacuum hot water boiler adopts advanced combustion technology, which can fully burn fuel, improve thermal efficiency and reduce energy consumption. Compared with traditional boilers, it can save a lot of energy costs and create greater economic benefits for enterprises.
Environmental protection and safety: The boiler adopts a fully enclosed combustion method, and the flue gas undergoes multi-stage purification treatment before being discharged, which complies with national environmental protection standards. At the same time, the boiler adopts an intelligent control system, which can realize functions such as automatic start and stop, automatic temperature adjustment, etc., which greatly improves the safety and reliability of use.
Flexible and stable: T6 vacuum hot water boiler is suitable for a variety of fuels, such as natural gas, liquefied petroleum gas, etc., and can be customized according to customer needs. At the same time, the boiler adopts a modular design and can easily operate multiple units in parallel to ensure the stability and reliability of the heating system.
Easy maintenance: The boiler has a simple and compact structure, making it easy to install and maintain. The professional after-sales service team ensures that customers receive timely technical support and solutions during use.
Safe and reliable: The internal pressure of the vacuum boiler is always in a vacuum state, avoiding dangers such as expansion, explosion, and rupture. At the same time, a high degree of automated control makes operation easier and reduces the risk of human error.
Long service life: Since oxygen corrosion and scaling are not easy to occur inside the vacuum boiler, its service life is relatively long, generally up to more than 20 years.
To sum up, the T6 vacuum hot water boiler has become a popular heating equipment on the market due to its significant advantages such as high efficiency, energy saving, environmental protection and safety, flexibility and stability, easy maintenance, safety and reliability, and long service life. Whether for home users or corporate customers, choosing T6 vacuum hot water boiler will be the preferred solution to achieve efficient, environmentally friendly and safe heating.

2024-11-05 15:33:38

Boiler operators need to master a wide range of knowledge and skills

Essential knowledge

Operation principle of boiler:
Understand the basic structure and working principle of the boiler, including the combustion system, steam-water system, smoke and air system, etc.
Master the operation procedures of boiler startup, operation, shutdown and accident handling.
Combustion adjustment:
Be familiar with the control of the ignition point of coal powder airflow to avoid the impact of premature or late ignition on boiler operation.
Master the adjustment method of the flame center height to ensure uniform temperature distribution in the furnace.
Understand the impact of fuel type and characteristics on the combustion process, as well as the basic principles of air distribution adjustment.
Boiler water level and steam pressure control:
Master the adjustment method of the boiler drum water level to ensure that the water level fluctuates within the normal range.
Understand the balance between steam pressure and boiler steam production, external steam consumption, and the impact of steam pressure changes on boiler operation.
Boiler efficiency and heat loss:
Be familiar with the calculation method and influencing factors of boiler efficiency, including flue gas heat loss, chemical incomplete combustion heat loss, mechanical incomplete combustion heat loss, etc.
Master the measures and methods to reduce heat loss and improve boiler efficiency.
Boiler accident handling:
Understand the types and causes of common boiler accidents, such as furnace coking, water wall tube burst, superheater overheating, etc.
Master the basic principles and emergency measures for accident handling to ensure safe operation of the boiler.
Boiler water quality treatment:
Understand the impact of boiler water quality on boiler operation, as well as the importance and methods of water quality treatment.
Master the deoxygenation, softening, and anti-corrosion treatment measures for boiler feed water.
Boiler piping system:
Be familiar with the layout and connection methods of the boiler piping system, including feed water pipes, steam pipes, and sewage pipes.
Understand the maintenance and maintenance methods of the piping system, as well as the troubleshooting methods for common faults.

Pipeline introduction

Feed water pipe:
The feed water pipe is an important pipe that provides deoxygenated feed water to the boiler.
The pipe is usually equipped with regulating valves, flow meters, pressure gauges and other instruments to monitor and control the feed water volume and water pressure.
Steam pipe:
The steam pipe is a pipe that transports steam generated by the boiler to the steam turbine or other steam-using equipment.
The pipes are usually equipped with accessories such as check valves, steam traps, and safety valves to ensure smooth steam delivery and safe use.
Sewage pipe: The sewage pipe is a pipe that discharges sewage and dirt from the bottom of the boiler out of the boiler.
The pipes are usually equipped with accessories such as sewage valves and sewage expansion tanks to reduce noise and heat loss during sewage discharge.
Other pipes: There are other auxiliary pipes in the boiler room, such as fuel pipes, gas pipes, air pipes, etc., which are used to provide fuel and air to the boiler.
In summary, the knowledge and skills that boiler operators need to master are quite extensive, including knowledge of boiler operation principles, combustion adjustments, boiler water level and steam pressure control, boiler efficiency and heat loss, boiler accident handling, boiler water quality treatment, and boiler piping systems. At the same time, they also need to understand the layout, connection methods, maintenance methods, and troubleshooting methods of various piping systems.

2024-10-29 09:06:27

Introduction to the knowledge of combined heat and power system (CHP)

1. Definition and Principle

A cogeneration system is an energy utilization method that uses a heat engine or power station to simultaneously produce electricity and useful heat. In standalone electricity production, some energy must be discarded as waste heat, but in combined heat and power, this heat can be put to use, allowing for efficient use of energy.

2. System composition

Combined heat and power systems usually include the following main parts:

Heat source: primary energy such as coal, natural gas, etc., used for combustion to generate heat energy.
Power generation equipment: such as steam turbines, gas turbines, etc., which use thermal energy to drive generators to generate electricity.
Waste heat recovery equipment: used to capture the waste heat generated during power generation and use it for heating or other purposes.
Control system: used to monitor and control the operation of the entire system to ensure system stability and efficiency.

3. Advantages and benefits

Combined heat and power systems have the following advantages and benefits:

Improve energy efficiency: By generating electricity and heat at the same time, combined heat and power systems can significantly improve energy efficiency, often reaching more than 80%.
Reduce environmental pollution: Compared with the traditional heat and power split production method, the combined heat and power system can reduce the emission of sulfur dioxide, smoke and other pollutants, which is beneficial to improving environmental quality.
Reduce energy costs: Because the combined heat and power system can achieve efficient use of energy, it can reduce energy costs and improve economic benefits.
Enhance energy supply stability: Combined heat and power systems can be used as part of a distributed energy system to enhance the stability and reliability of energy supply.

4. Application fields

Combined heat and power systems are widely used in various fields, including but not limited to:

Industrial parks: In industrial parks, combined heat and power systems can provide power and heat to multiple enterprises, reducing energy costs and improving energy utilization efficiency.
Urban central heating: In urban central heating, the combined heat and power system can be used as the main heat source to provide stable and reliable heating services to urban residents.
Data center: Data centers require a large amount of power and cooling energy. The combined heat and power system can provide power and cooling energy for the data center while reducing energy waste and environmental pollution.
Hospitals and schools: Public facilities such as hospitals and schools require large amounts of electricity and heat, and combined heat and power systems can provide these facilities with a stable and reliable energy supply.

5. Development Trend

With the increasing global attention to energy efficiency and environmental protection, the development trends of combined heat and power systems are as follows:

Continuous technological innovation: With the advancement and innovation of science and technology, the technology of combined heat and power systems will continue to be improved and optimized to improve energy efficiency and environmental protection performance.
Increasing policy support: Governments around the world have introduced relevant policies to support the development and application of cogeneration systems, such as providing tax incentives and financial subsidies.
Market demand continues to grow: With the acceleration of industrialization and urbanization and the continuous growth of energy demand, the market demand for combined heat and power systems will continue to grow.
To sum up, the combined heat and power system, as an efficient and environmentally friendly way of utilizing energy, will play an increasingly important role in future development.

2024-10-21 11:17:05

Boiler Use and Safety Knowledge Guide in October 2024

As autumn deepens, the temperature gradually drops. As an important heating equipment, the frequency of use of boilers also increases. In this critical period of October 2024, it is particularly important to understand and master the correct use and safety knowledge of boilers. The following is a comprehensive guide to boiler use and safety knowledge, which aims to help users better manage and maintain boiler equipment to ensure safe and efficient enjoyment of warmth.
 

1. The basic working principle of boilers

 

 
A boiler is an energy conversion device that uses the heat energy generated by fuel combustion to heat water into steam or hot water, and then transports it to various hot spots through pipelines to achieve heating or process heat. The core components of the boiler include burners, heat exchangers, control systems, etc., which work together to ensure the stable operation of the boiler.
 

2. Correct use of boilers


Pre-start inspection: Before starting the boiler, the boiler body, combustion system, control system, etc. should be fully inspected to ensure that all components are intact, tightly connected, and leak-free. At the same time, check whether safety accessories such as water level gauges, pressure gauges, and safety valves are sensitive and reliable.
Ignition and heating: According to the boiler operating procedures, ignition and heating operations should be carried out step by step. Pay attention to controlling the heating speed to avoid rapid heating that may cause uneven heating of the boiler, excessive stress, and other problems.
Operation monitoring: During the operation of the boiler, close attention should be paid to changes in key parameters such as water level, pressure, and temperature, and the combustion intensity and circulating water volume should be adjusted in time to ensure that the boiler operates under safe and economic conditions.
Blowdown and descaling: Regular blowdown and descaling are important measures to keep the boiler water clean and improve thermal efficiency. A reasonable blowdown and descaling plan should be formulated according to the water quality and strictly implemented.
 

3. Boiler safety knowledge

 

 
The importance of safety accessories: Safety accessories such as water level gauges, pressure gauges, and safety valves are important guarantees for the safe operation of boilers. These accessories should be calibrated regularly to ensure their sensitivity and reliability. Once an abnormality is found, the machine should be shut down immediately for processing.
Prevent overpressure operation: Overpressure operation of the boiler is one of the main causes of accidents. Therefore, the working pressure of the boiler should be strictly controlled and should not exceed the design pressure. At the same time, an overpressure protection device should be set up, and once the pressure exceeds the set value, the machine will automatically shut down and alarm.
Prevent dry burning due to lack of water: Dry burning due to lack of water in the boiler will cause overheating, deformation and even rupture of the boiler heating surface. Therefore, the boiler water level should be checked regularly to ensure that the water level is within the normal range. Once the water level is abnormal, the boiler should be shut down and water should be replenished immediately.
Prevent over-temperature operation: Over-temperature operation of the boiler will accelerate the aging, corrosion and scaling of the heating surface and reduce the service life of the boiler. Therefore, the outlet water temperature of the boiler should be strictly controlled and must not exceed the design temperature. At the same time, an over-temperature protection device should be set up, and once the temperature exceeds the set value, the boiler will automatically shut down and alarm.
Regular maintenance: Regular maintenance of the boiler is the key to ensure its long-term stable operation. A detailed maintenance plan should be formulated, including cleaning the burner, replacing the filter, checking the seals, etc., to ensure that all parts of the boiler are in good working condition.
 

4. Emergency treatment measures


During the operation of the boiler, once a fault or accident occurs, emergency treatment measures should be taken immediately to prevent the situation from escalating. The following are some common emergency treatment measures:

Shutdown alarm: Once the boiler is found to be abnormal or faulty, it should be shut down immediately and the alarm should be sounded, and the relevant personnel should be notified to handle it.
Cut off the fuel supply: When shutting down, the fuel supply should be cut off quickly to prevent the spread of fire or explosion accidents.
Discharge steam or hot water: After shutting down, the discharge valve should be opened to discharge the steam or hot water in the boiler to reduce the pressure and temperature in the boiler.
Evacuate personnel: In an emergency, personnel in the boiler room and its surroundings should be evacuated quickly to ensure personnel safety.
Contact professionals: While taking emergency measures, professional boiler maintenance personnel or relevant institutions should be contacted as soon as possible for further troubleshooting and repair work.
In summary, the Boiler Use and Safety Knowledge Guide in October 2024 covers many aspects such as the basic working principle of the boiler, correct use methods, safety knowledge, and emergency treatment measures. It is hoped that users can carefully study and master this knowledge to ensure the safe and efficient operation of the boiler and provide strong guarantees for winter heating work.

2024-10-08 16:15:48

Boiler knowledge overview at the end of September 2024

Boiler industry market development status

As of the end of September 2024, China's boiler manufacturing industry continues to maintain a strong development momentum. According to the latest data from Shangpu Consulting Group, China's boiler market has expanded significantly in the first half of 2024. The full-year market size is expected to reach approximately 250 billion yuan, with the year-on-year growth rate remaining at a high level, reflecting strong demand in the boiler market. and technological innovation.

In terms of policy support, the National Development and Reform Commission, the State Administration for Market Regulation and other departments continue to issue relevant policies to promote the green, low-carbon and efficient development of the industrial boiler industry. For example, documents such as the "Notice on Further Strengthening the Update, Upgrade, Application and Implementation of Energy Saving Standards" clarified the improvement of energy efficiency standards for key energy-consuming products and equipment such as industrial boilers, and promoted the popularization and application of clean energy boilers.

Boiler working principle and classification

As an important thermal energy supply equipment, boilers are widely used in many industries such as electric power, machinery, metallurgy, chemical industry, textile, papermaking, and food. Its basic principle is to generate high-temperature flue gas through fuel combustion, and then transfer heat to water or other working fluids to heat, vaporize or generate superheated steam. The main working process of the boiler includes three links: combustion, heat transfer and steam-water circulation.

Boilers can be divided into many types according to fuel type, structural form, purpose, etc. Common boilers include steam boilers, hot water boilers and organic heat carrier boilers. Among them, steam boilers are mainly used for steam supply in industrial production, hot water boilers are mostly used for civil heating, and organic heat carrier boilers are widely used in situations that require high-temperature heat sources.

Boiler technology development trends

High efficiency and energy saving: With the advancement of environmental protection and energy saving policies, high efficiency and energy saving have become an important development direction of the boiler industry. Modern boilers generally adopt high-efficiency combustion technology and waste heat recovery technology, which significantly improves energy utilization efficiency and reduces energy consumption and emissions.
Intelligence: Digital and intelligent technologies are gradually being applied to the design, manufacturing, operation and maintenance of boilers. Smart boilers have adaptive capabilities and remote monitoring capabilities, enabling more precise control and management, improving operating efficiency and safety.
Cleanliness: The proportion of clean energy boilers continues to rise, and coal-fired boilers, especially small-capacity coal-fired industrial boilers, are gradually withdrawing from the market. Clean energy boilers such as natural gas boilers and electric boilers are more widely used, promoting the green transformation of the boiler industry.
Large-scale: Due to its relatively higher thermal efficiency, safety and balance and other characteristics, large-capacity industrial boilers are showing an upward trend in the product structure. Enterprises continue to increase investment in technological innovation and R&D to improve product performance and efficiency.

Boiler safety management

As a high-temperature and high-pressure equipment, the safety management of boilers is crucial. In the daily operation and operation of boilers, relevant safety regulations and operating procedures must be strictly observed to ensure the safety of personnel and equipment.

Regular inspection: The main accessories of the boiler such as safety valves, pressure gauges, water level gauges, etc. need to be calibrated at least once a year. The boiler itself needs to undergo regular internal and external inspections and water pressure inspections to ensure the normal operation and safety of the equipment.
Labor protection: When working in high temperature and high pressure environments, operators should wear anti-scalding clothing, anti-scalding gloves, helmets and other labor protection supplies to prevent burns and other injuries.
Emergency treatment: When a boiler failure or emergency occurs, the fuel supply should be cut off immediately, the emergency safety valve should be activated to release the pressure, and relevant departments and personnel should be notified to handle the failure in a timely manner to prevent the accident from expanding.
Personnel training: Boiler operators should have certain professional knowledge and operating skills, and receive relevant training and assessments regularly to ensure that they can operate the equipment proficiently and respond to various emergencies.
To sum up, the boiler industry at the end of September 2024 has made significant progress in terms of market size, technology development and safety management. With the continuous advancement of technology and the increase of market demand, the boiler industry will usher in a broader development space.

2024-09-26 11:11:44

 1/39
 
 1/39