News information

The 50-ton steam boiler was successfully put into operation to help enterprises produce efficiently

Recently, the 50-ton steam boiler introduced by a company successfully completed installation and commissioning and was officially put into production. This move marks an important step for the company in improving production efficiency and energy use.
 
It is understood that the 50-ton steam boiler adopts advanced combustion technology and automated control system to ensure stable and efficient steam output. Compared with traditional boilers, this boiler has higher thermal efficiency and lower emissions, which can not only meet the growing steam demand of enterprises, but also effectively reduce energy consumption and environmental pollution.

At the commissioning ceremony, the person in charge of the company said: "The introduction of this 50-ton steam boiler is an important measure for us to improve our production capacity and environmental protection level. We believe that with the support of advanced equipment, our production efficiency will be greatly improved. At the same time, It will also inject new impetus into the sustainable development of the enterprise.”

In addition, the commissioning of the boiler has also brought significant economic benefits to the company. By optimizing steam supply and energy utilization, companies can reduce production costs and improve market competitiveness. At the same time, the boiler's automated control system also saves the company a lot of labor costs and improves the intelligent level of production management.
In order to ensure the safe operation of the boiler, the company has also equipped professional technicians and maintenance teams to conduct regular inspections and maintenance of the boiler. At the same time, the company has also strengthened safety training for employees, improved their safety awareness and operating skills, and provided a strong guarantee for the long-term and stable operation of the boiler.

Looking to the future, the company will continue to increase investment in technological innovation and equipment, continuously improve production efficiency and product quality, and make greater contributions to the sustainable development of the industry. At the same time, enterprises will also actively respond to national environmental protection policies, strengthen energy conservation and emission reduction, and contribute to building a beautiful China.

2024-12-18

NEW

Composite smoke pipe, welded pipe and conjugate pipe: Overview of characteristics and applications

1. Composite smoke pipe

Composite smoke pipe, also known as fireproof composite smoke exhaust duct, is mainly composed of two layers of metal thin plates inside and outside and a middle insulation material layer.

Material:
Inner thin plate: usually galvanized plate or stainless steel plate, these materials have excellent corrosion resistance and high temperature resistance.
Outer thin plate: mostly aluminum-zinc-magnesium alloy plate or color steel plate, these materials have good corrosion resistance and aesthetics.
Intermediate insulation material: can be glass wool, aluminum silicate plate or rock wool, etc., these materials have excellent thermal insulation and fireproof properties.
Features:
Good fireproof performance: The fireproof grade of the composite smoke pipe generally reaches A2 level, and it can withstand high-temperature smoke.
Low thermal conductivity: The presence of the middle insulation material makes the composite smoke pipe have a lower thermal conductivity, avoiding the problem of excessive indoor and outdoor temperature gradient.
Good corrosion resistance: The material selection of the inner and outer two layers of metal thin plates makes the composite smoke pipe have good corrosion resistance.
Various connection methods: flange connection, bayonet connection, metal hose connection, etc. can be used for connection, which has greater flexibility.
Wide range of applications: suitable for smoke exhaust, ventilation and air supply systems.

2. Welded pipe

Welded pipe is a steel pipe made by welding steel plates or strips after curling and forming.

Classification:
According to the production method: it can be divided into arc welded pipes, resistance welded pipes, (high frequency, low frequency) gas welded pipes, furnace welded pipes, etc. Smaller diameter welded pipes use straight seam welding, while large diameter welded pipes mostly use spiral welding.
According to the shape of the steel pipe: it can be divided into round welded pipes and special-shaped (square, rectangular, etc.) welded pipes.
According to the material and use: it can be divided into welded steel pipes for fluid transportation in mines, galvanized welded steel pipes for low-pressure fluid transportation, and electric welded steel pipes for belt conveyor rollers.
Features:
Strength: Although the strength of welded steel pipes is lower than that of seamless steel pipes, they are still widely used.
Delivery length: Generally, welded pipes are used to transport low-pressure fluids. The delivery length is usually 4~10m, and fixed length (or multiple length) is often required for delivery.
Wall thickness: According to the specified wall thickness, welded pipes are divided into ordinary steel pipes and thickened steel pipes. Steel pipes are divided into threaded and non-threaded types according to the form of pipe ends.
Application range:
Widely used in tap water projects, petrochemical industry, chemical industry, power industry, agricultural irrigation, urban construction and other fields.
According to function, it can be divided into liquid transportation (water supply, drainage), gas transportation (gas, steam, liquefied petroleum gas), and structural use (pile pipes, bridges, docks, roads, and building structure pipes).

3. Conjugate pipe (taking HDPE conjugate pipe as an example)

HDPE (High Density Polyethylene) is a high-density polyethylene with excellent chemical corrosion resistance, high strength and stiffness, good wear resistance and low water absorption. HDPE conjugate pipe is a pipe made of HDPE material.

Features:
Chemical corrosion resistance: It can resist the corrosion of various acids, alkalis, salt solutions and various chemical substances, and can operate stably in various harsh environments.
High strength and rigidity: It can withstand greater pressure and heavy loads, and is not easy to deform or break.
Abrasion resistance: It can resist the impact and wear of particles, reducing the frequency of pipeline maintenance and replacement.
Low water absorption: It is not easy to be affected by moisture, and can still maintain good performance in a humid environment.
Good welding performance: Pipeline connection can be carried out by hot melt connection and other methods, with high connection strength, ensuring the sealing and reliability of the pipeline system.
Application range:
Commonly used in water supply, drainage, natural gas transportation and industrial fluid transportation.
It is also widely used in underground drainage systems, because HDPE conjugate pipes have low water absorption and good chemical corrosion resistance, which are suitable for use in humid underground environments that are easily corroded by chemical substances.
In short, composite smoke pipes, welded pipes and conjugate pipes have their own characteristics and are widely used in different fields. Which pipe material to choose depends on the specific application scenario and needs.

2024-12-23

A practical guide to the use and maintenance of 50-ton steam boilers

About the use of 50-ton steam boilers, the following is a detailed introduction from the aspects of pre-operation preparation, startup steps, operation monitoring, shutdown operation and daily maintenance:

1. Pre-operation preparation

Check the appearance of the boiler: Make sure the appearance of the boiler is intact, without water leakage, air leakage, etc.
Check the fuel supply: Ensure that the supply of fuels such as liquefied gas and natural gas is sufficient and without leakage.
Cleaning work: Clean the flue and water pipes of the boiler to ensure unobstructed; clean the ash and residue in the furnace.
Check the valve: Make sure that all valves are closed well, especially the safety valve, pressure gauge, water level gauge and other safety devices should be in normal working condition.
Check the steam system: Check whether the various instruments and equipment of the steam system are operating normally.
Check the power supply, voltage, and water source: Ensure that the power supply and voltage are stable and the water supply is normal.

2. Startup steps

Add water: Open the water supply valve and inject water into the steam boiler. At the same time, observe the water level gauge to ensure that the water level returns to the normal water level line. Note that the water quality should be clean and avoid using water with too high hardness.
Start the induced draft fan: introduce air into the furnace.
Ignition and combustion: put in fuel and ignite the burner. A series of checks need to be carried out before ignition, such as opening the fuel system pressure gauge valve and the instrument air system, to ensure that all indicators are normal.
Warm up the pipe and increase the pressure: after starting the steam boiler, first warm up the pipe, then increase the pressure, and then ignite. This process needs to be carried out in sequence and cannot be reversed.

3. Operation monitoring

Real-time monitoring: real-time monitoring of parameters such as steam pressure, water level, and gas concentration, and adjust according to actual conditions.
Drainage: Regularly drain sewage to prevent pipeline blockage. When draining sewage, pay attention to the pressure discharge between 0.1MPa and 0.15MPa.
Keep clean: regularly remove ash and coke in the furnace and smoke pipe of the steam boiler to keep the combustion unobstructed.
Control fuel supply: strictly control the supply of fuel to avoid excessive or insufficient fuel and maintain stable combustion.

4. Shutdown operation

Reduce steam supply: gradually reduce the steam supply and wait for the pressure to drop to a safe range.
Close the valve: Close the main steam valve and water supply valve to stop the flow of steam and water.
Stop combustion: Turn off the burner and stop the supply of fuel.
Turn off the induced draft fan: Stop the entry of air.
Wait for cooling: Wait for the steam boiler to cool down before cleaning and repairing.

5. Daily maintenance

Regular inspection: The boiler and its safety accessories (such as safety valves and pressure gauges) need to be inspected regularly, and equipment that has not been inspected regularly shall not be used.
Safety accessory inspection: The safety valve needs to be calibrated regularly, and the pull rod should be pulled at least once a month to check its flexibility.
Water quality monitoring: Regularly monitor and test the water quality of the boiler to ensure that the water quality meets the requirements. Water treatment and water replenishment operations are carried out when necessary.
Professional training: Operators must be trained and obtain the "Special Equipment Operator Certificate" to ensure that they can operate proficiently and respond to emergencies.
In summary, the use of a 50-ton steam boiler involves many aspects and links, and operators need to have professional knowledge and operating skills. In actual operation, the operating procedures and safety systems should be strictly followed to ensure the safe and efficient operation of the boiler. At the same time, it is also necessary to strengthen daily maintenance and maintenance work to extend the service life of the boiler and improve economic benefits.

2024-12-18

Full analysis of energy-saving design knowledge of industrial boiler systems

As important energy conversion equipment, industrial boilers are widely used in chemical, textile, printing and dyeing, papermaking, food and other industrial sectors. However, their energy consumption is high, mainly in terms of fuel consumption, steam consumption and thermal system losses. With the rise in energy prices and the improvement of environmental protection requirements, the energy-saving design of industrial boilers has become one of the key measures for enterprises to reduce costs and improve competitiveness. The following is a comprehensive analysis of the energy-saving design knowledge of industrial boiler systems.

1. Energy-saving policies and standards

The state has issued a series of industrial boiler energy-saving policies and standards, such as the "Energy Conservation Law of the People's Republic of China" and the "Industrial Boiler Energy Efficiency Limit Values ​​and Energy Efficiency Grades", requiring enterprises to take effective energy-saving measures to improve the energy efficiency of industrial boilers and promote energy conservation and rational use.

2. Fuel selection and optimization

Select high-efficiency fuels: Select fuels with high calorific value and low sulfur content to improve combustion efficiency.

Fuel processing and transportation optimization: Pre-treat the fuel by crushing, screening, drying, etc. to improve the combustion performance of the fuel.

Fuel ratio optimization: According to the boiler load and fuel characteristics, reasonably adjust the fuel ratio to reduce the combustion cost.

3. Combustion system optimization

Select high-efficiency burners: improve combustion speed and combustion efficiency.
Burner optimization adjustment: adjust the relative position of the burner and the furnace, improve the aerodynamic field, and improve combustion efficiency.
Aerodynamic field optimization: adopt advanced combustion control systems to achieve automatic adjustment and control of the combustion process.

4. Waste heat recovery and utilization

Install waste heat recovery equipment: such as waste heat boilers, heat exchangers, etc., to convert waste heat into useful heat energy for heating, power generation, production processes, etc., to improve energy utilization efficiency.
Waste heat recovery system optimization design: reduce system resistance and improve waste heat recovery efficiency.

5. Heat energy transmission and distribution optimization

Adopt advanced heat energy transmission and distribution technology to reduce energy loss and improve energy utilization efficiency. For example, optimize the thermal system, improve thermal energy utilization rate, and reduce heat loss.

6. Equipment energy-saving transformation

Combustion system transformation: adopt advanced control systems to achieve boiler automation and reduce manual operation errors.
Thermal system transformation: optimize the thermal system and improve thermal energy utilization rate.
Energy-saving transformation of boiler equipment: Rationally design the insulation layer, use insulation materials with low thermal conductivity, high temperature resistance and corrosion resistance to reduce heat loss.

7. Energy-saving technology for operation and management

Remote monitoring: Use Internet technology to achieve remote monitoring and fault diagnosis to reduce maintenance costs.
Automation control: Use advanced automation control technology to achieve automatic adjustment of boiler combustion, water supply, slag discharge and other systems to improve operation efficiency.
Intelligent monitoring: By installing sensors and data acquisition systems, real-time monitoring of boiler operating parameters is provided to provide data support for optimized operation.

8. Energy-saving case analysis

Take a steel company as an example. The company effectively improves energy utilization efficiency and reduces energy consumption and costs by recycling the waste heat generated by industrial boilers and using the waste heat for power generation or heating. At the same time, by strengthening energy measurement and statistics, timely discovering and solving energy waste problems, and further improving energy utilization efficiency.

9. Development trend of energy-saving technology

Policy support: The government has introduced a series of energy-saving and emission reduction policies to encourage enterprises to carry out energy-saving transformation and technological innovation.
Market demand: With the improvement of environmental awareness, the market demand for energy-saving products continues to increase.
Technological innovation: Enterprises need to continuously carry out technological innovation and research and development to improve the competitiveness and market share of their products.
Capital investment: Energy-saving transformation requires a large amount of capital investment. Enterprises need to rationally plan the use of funds to ensure the smooth implementation of the project.
In summary, the energy-saving design of industrial boiler systems involves many aspects, including policies and standards, fuel selection and optimization, combustion system optimization, waste heat recovery and utilization, heat transmission and distribution optimization, equipment energy-saving transformation, and operation and management energy-saving technology. Enterprises should formulate detailed energy-saving transformation plans based on their actual conditions, clarify transformation goals, time arrangements and budgets, etc., to improve the energy efficiency level of industrial boilers, reduce operating costs, and achieve sustainable development.

2024-12-13

Application and function analysis of boilers in lighthouse factories

As an energy conversion device, boilers have a wide range of applications in industry, but in lighthouse factories, their use is limited by specific environments and needs. The following is a detailed analysis of the possible applications and functions of boilers in lighthouse factories:

1. Overview of the Lighthouse Factory

Lighthouse factories usually refer to factories that have reached a high level of industrial automation, intelligence and digitalization. These factories have achieved significant improvements in production efficiency and significant reductions in costs through the use of advanced technology and innovative management methods. Lighthouse factories are often located in specific geographical locations, such as at sea or other special terrains, which makes the selection and use of their equipment need to take into account the particularities of the environment.

2. Potential uses of boilers in lighthouse factories

Electricity supply:
Although coal-fired boilers are less suitable in lighthouse plants, other types of boilers, such as oil or natural gas boilers, can still be used to generate electricity. These boilers release thermal energy by burning fuel, heating water into high-temperature and high-pressure steam, which then drives a steam turbine to generate electricity.
Heating and Cooling:
In lighthouse factories, boilers can be used for heating systems, especially during the cold season. The high-temperature hot water or steam generated by the boiler can be used to deliver heat energy to the building to achieve heating. At the same time, in some cases, the boiler can also be used as a condenser for the refrigeration system, discharging heat to the environment.
Industrial wastewater treatment:
The steam generated by the boiler can be used to drive wastewater treatment equipment, such as aerators, mixers, etc., to improve the efficiency and quality of wastewater treatment. This is an important environmental measure for the lighthouse factory.
Auxiliary production process:
In some lighthouse factories, boilers may be used in auxiliary production processes such as metal processing, ceramic production, etc. These processes require high-temperature steam or hot water to heat or support process equipment.

3. Limitations of boilers in lighthouse factories

Environmental pollution:
Coal-fired boilers easily produce large amounts of pollutants and harmful substances such as carbon dioxide, which pollute and impact the environment of the lighthouse factory. Therefore, when using boilers in lighthouse factories, you need to choose fuel types with better environmental performance, such as natural gas or oil.
Installation and maintenance:
Lighthouse factories are usually located at sea or other special terrain, which makes the installation and maintenance of boilers relatively difficult. Therefore, when choosing a boiler, you need to consider its ease of installation and maintenance.
Energy efficiency:
Lighthouse factories often have high requirements for energy efficiency. When selecting a boiler, you need to pay attention to indicators such as its energy efficiency ratio and thermal efficiency to ensure that you can reduce energy consumption and costs while meeting production needs.

4. Conclusion

In summary, boilers have a variety of potential uses in lighthouse factories, including power supply, heating and cooling, industrial wastewater treatment and auxiliary production processes. However, due to the special environment and demand constraints of the lighthouse factory, factors such as environmental pollution, installation and maintenance, and energy efficiency need to be considered when selecting and using boilers. Therefore, the lighthouse factory should choose the appropriate boiler type and configuration plan based on its actual situation and needs.

2024-12-09

Boiler technology innovation promotes green development of pharmaceutical industry

With the arrival of the end of November, the application of boiler technology in the pharmaceutical industry has once again become the focus of industry attention. In recent years, with the continuous advancement of the country's energy-saving and environmental protection policies, the boiler industry is undergoing a transformation from traditional coal-fired boilers to clean energy boilers. This transformation not only helps to reduce pollutant emissions, but also promotes technological progress and industrial upgrading in the boiler industry. In the pharmaceutical industry, the innovation of boiler technology has also injected new vitality into the green development of the industry.

1. Wide application of clean energy boilers

In the pharmaceutical industry, traditional coal-fired boilers are gradually being eliminated due to their high energy consumption and high emissions. They are replaced by clean energy boilers such as gas boilers and electric boilers. These new boilers are not only efficient, energy-saving, and environmentally friendly, but also meet the high demand for thermal energy in the pharmaceutical industry. In particular, gas boilers, with their high combustion efficiency and low emissions, have become the preferred thermal energy supply equipment for pharmaceutical companies.

2. The introduction of intelligent and automated technologies

With the continuous development of intelligent and automated technologies, the operation and management of boilers has become more efficient, convenient, and safe. In the pharmaceutical industry, the intelligent boiler system can monitor the operating parameters of the boiler in real time to ensure that the boiler operates in a safe and efficient state. At the same time, automation technology can also realize remote control and automatic adjustment of boilers, greatly reducing the difficulty and cost of manual operation.

3. The important role of steam generators in pharmaceutical production

As an important equipment on the pharmaceutical production line, steam generators provide steam heat energy for drug purification, distillation, heating, drying, etc. In the pharmaceutical process, the high-temperature clean steam generated by the steam generator can stably heat the reaction tank containing drugs, accelerate the mixing reaction of drugs, ensure the high quality of drugs and shorten the production time. In addition, the steam generator also has the advantages of free registration, free certificate, one-button start, and intelligent full-automatic operation, which perfectly replaces traditional boilers.

4. Future development trend of boiler technology

In the future, boiler technology will continue to develop in the direction of high efficiency, energy saving and environmental protection. On the one hand, with the popularization of clean energy and the application of intelligent technology, the operating efficiency and environmental protection performance of boilers will be further improved; on the other hand, the boiler industry will pay more attention to technical innovation and transformation in energy conservation and emission reduction, resource recovery and recycling, and promote the industry to develop in the direction of green and environmental protection.

In the pharmaceutical industry, the innovation of boiler technology will provide strong support for the green development of the industry. In the future, with the continuous advancement of boiler technology and the expansion of its application scope, the pharmaceutical industry will achieve a more efficient, energy-saving and environmentally friendly production method, and make greater contributions to human health.

In summary, the innovation of boiler technology is an important force in promoting the green development of the pharmaceutical industry. In the future, with the popularization of clean energy and the application of intelligent technology, boiler technology will play a more important role in the pharmaceutical industry.

2024-11-29

Boiler room knowledge full analysis

As the core facility for heat energy supply, boiler room is widely used in many fields such as heating and industrial production. This article will give you a detailed introduction to the working principle, equipment composition, safety setting requirements and current development trends of the boiler industry.

1. Working principle of boiler room

The working principle of boiler room is mainly based on the combustion of fuel and the transfer of heat energy. The following are the basic steps of boiler room work:

Fuel combustion: The boiler room uses different types of fuels such as coal, fuel oil, and natural gas. These fuels are ignited in the combustion chamber and release a large amount of heat energy.
Heat energy conduction: The high-temperature flue gas generated by combustion is transferred to the circulating medium (usually water or steam) in the boiler through the heat conduction of the boiler furnace wall.
Heating medium: Water or steam is used as a heat transfer medium and flows through the pipe system in the boiler. The heat energy is transferred to the water or steam to increase its temperature.
Energy conversion: The heat energy generated by combustion is eventually converted into mechanical energy or thermal energy and used for steam supply in heating or other industrial processes.
Steam circulation: After the water is heated and converted into steam, the steam is pushed into the heat transfer loop and circulates throughout the boiler system. The steam further transfers heat to the medium to be heated, then is cooled and turned into water, and returns to the boiler for circulation again.

2. Equipment composition of the boiler room

The equipment in the boiler room includes the boiler body and auxiliary equipment.

Boiler body: mainly includes steam boiler, furnace, steam superheater, economizer and air preheater. These components together constitute the basic structure of the boiler, realizing the combustion of fuel and the transfer of heat energy.
Auxiliary equipment:
Coal transportation and ash removal system: including conveyor and ash car, which are used for the transportation of fuel and the discharge of ash.
Supply and induced draft system: including blower, induced draft fan, chimney and dust collector, which are used to provide the required air for combustion and discharge flue gas.
Water and steam system: including feed water pump, water treatment equipment, water tank, steam cylinder and sewage desuperheating pool, which are used for water treatment and steam distribution.

3. Safety setting requirements of the boiler room

The safety setting requirements of the boiler room are strict to ensure the safety of equipment and personnel.

Equipment layout: The equipment in the boiler room should be easy to operate, pass and repair.
Lighting and ventilation: The boiler room should have sufficient lighting and good ventilation, as well as necessary cooling and antifreeze measures.
Prevent water accumulation: The boiler room should prevent water accumulation and ensure that the ground is flat and without steps.
Load-bearing structure: The load-bearing beams and columns of the boiler room should be at a certain distance from the boiler or other measures should be taken to prevent damage by high temperature.
Exit setting: There are at least two exits on each floor of the boiler room, located on both sides. For single-layer boilers with smaller areas, only one exit can be opened.
Door and window setting: The door leading to the outside of the boiler room should open outward and remain unobstructed during the operation of the boiler. The door of the studio or living room in the boiler room should open to the inside of the boiler room.
Lighting equipment: There should be sufficient lighting at the operating location and water level gauge, pressure gauge, thermometer, flow meter, etc. in the boiler room, and equipped with spare lighting equipment or tools.

4. Development trend of the boiler industry

At present, the boiler industry is undergoing a transformation from traditional coal-fired boilers to clean energy boilers.

Clean energy boilers: With the continuous advancement of the country's energy-saving and environmental protection policies, the market share of clean energy boilers such as gas boilers and electric boilers has continued to rise, which helps to reduce pollutant emissions.
Technological innovation: The application of advanced technologies such as water-cooled premixed combustion technology, flue gas condensation heat exchange technology and vacuum phase change heat exchange technology has improved the thermal efficiency and environmental performance of boilers.
Intelligence: The introduction of intelligent and automated technologies makes the operation of boilers more efficient and safe.
Market demand: With the in-depth advancement of industrialization and urbanization, and the improvement of residents' living standards, the demand for thermal energy continues to grow, which has promoted the stable development of the boiler industry.
In summary, as an important facility for thermal energy supply, the working principle, equipment composition and safety setting requirements of the boiler room are all crucial. At the same time, with the continuous development of the boiler industry, the application of clean energy boilers and intelligent technologies will become a future development trend.

2024-11-21

The use and advantages of condensing gas boilers

Condensing gas boilers, as modern, efficient, energy-saving and environmentally friendly heating equipment, have gradually become the main choice for natural gas energy-saving heating. It not only greatly improves operating efficiency, but also significantly reduces users' operating costs and brings considerable economic benefits. This article will explain in detail how to use a condensing gas boiler and its significant advantages.

How to use

Security check:
Before using a condensing gas boiler, a comprehensive safety check must be carried out. This includes checking whether each valve instrument is loose, whether the drain port and drain port are open, etc., to ensure that the various safety indexes of the boiler are at normal levels.
Water system connection and water filling:
After connecting the water system, inject water into the system and observe the water pressure changes on the pressure gauge inside the boiler. When the water pressure reaches the limited value range, stop water injection and check whether there is looseness or leakage at each waterway connection.
Power on and exhaust:
After turning on the power, press the power button to start the water pump and discharge the air from each heat exchanger coil. Or you can manually unscrew the manual exhaust valve at the front of the heat exchanger to exhaust. After exhausting, if the water pressure drops, water needs to be replenished until the water pressure reaches the working range.
Ignition operation:
After the smoke pipe is connected, connect the air source and perform ignition operation. Observe the red signal light on the sub-control board. The signal light will flash slowly after power is turned on, and will flash quickly after ignition is successful.
Parameter adjustment:
Under normal circumstances, the parameters of the condensing gas boiler have been adjusted before leaving the factory, and there is no need to make adjustments on site. However, if the local natural gas calorific value, air pressure or altitude changes, the combustion system must be analyzed and adjusted by professional technicians.

Advantages

High efficiency and energy saving:
The thermal efficiency of condensing gas boilers is as high as over 106%, far exceeding the domestic standard of about 94%. It recovers the heat energy in the flue gas by condensing the flue gas, greatly improving the thermal efficiency. The exhaust gas temperature is reduced to 5070°C, fully recovering the sensible heat in the flue gas and the latent heat of condensation of water vapor. Compared with traditional boilers (thermal efficiency is generally between 85% and 91%), it can save about 10% of gas.
Environmentally friendly cleaning:
The ultra-low carbon monoxide (CO) and nitrogen oxides (NOX) emissions of condensing gas boilers make them cleaner and more environmentally friendly, and can meet strict emission standards, such as Beijing’s 2017 boiler emission standards. More advanced condensing gas boilers use smokeless combustion technology, reducing nitrogen oxide emissions to more than 35mg/kwh.
Safe and reliable:
The condensing gas boiler is designed in full compliance with European safety requirements, and the combustion status is monitored throughout the process to eliminate the risk of excessive carbon monoxide. In addition, its powerful control system ensures that each boiler operates within an energy-saving range, increasing the safety of use.
Low exhaust smoke temperature:
The exhaust gas temperature of the condensing gas boiler is between 30°C and 70°C, and plastic pipes (such as PP, PVC) can be used, which further improves its energy-saving effect.
Precise temperature control:
Condensing gas boilers have precise temperature control capabilities, and the water temperature control accuracy can reach ±0.5°C, ensuring the comfort and stability of heating.
Economical and practical:
The high efficiency and energy saving characteristics of condensing gas boilers enable it to significantly reduce users' operating costs. In addition, due to its excellent environmental performance, users may also enjoy government environmental subsidies or preferential policies, further reducing usage costs.
In summary, condensing gas boilers have become the preferred equipment in modern heating systems due to their significant advantages such as high efficiency and energy saving, environmental protection and cleanliness, safety and reliability, low exhaust gas temperature, precise temperature control, economy and practicality. During use, users only need to operate according to specifications and perform regular maintenance and upkeep to ensure long-term stable operation and bring long-lasting and stable heating effects to users.

2024-11-12

T6 vacuum hot water boiler: the preferred solution for efficient, energy-saving and environmentally

In today's society, with the increasing awareness of environmental protection and the increasingly tense energy consumption, it is particularly important to choose an efficient, environmentally friendly and safe heating equipment. With its unique advantages and excellent performance, T6 vacuum hot water boiler has become the ideal choice for many users. This article will introduce in detail the use of T6 vacuum hot water boiler and its significant advantages.

1. How to use T6 vacuum hot water boiler

Device operation: Before the boiler is put into operation, a comprehensive inspection of the boiler and its ancillary equipment should be carried out, including mechanical integrity and safety, specifications and sealing of the piping system, grounding and insulation resistance of the electrical system, etc. Ensure all equipment complies with national standards and usage requirements.
Start-up and shutdown: Before starting, it is necessary to correctly drain the water, clean the boiler according to the operating instructions, and check the weather conditions. After startup, the operation should be carried out in strict accordance with the prescribed steps to avoid unauthorized adjustment of control parameters. When an abnormality is discovered during boiler operation, the boiler should be shut down immediately and the emergency shutdown device should not be used casually.
Daily operation: In daily use, active maintenance should be carried out, such as regular sewage discharge, inspection of safety valves and pressure gauges, etc. At the same time, pay attention to the surrounding environment and maintain good ventilation to avoid potential safety hazards. Parameters such as water temperature, water pressure, and electrical equipment protection must be managed in a standardized manner. Debris must not be piled around the boiler to keep the site dry and clean.
Emergency handling: In the event of an emergency, the boiler and corresponding supporting equipment should be shut down immediately, the fuel and power supply should be cut off, the boiler's emergency shutdown device, such as safety valves, etc. should be activated, and the alarm should be called immediately to seek assistance from relevant professionals.

2. Significant advantages of T6 vacuum hot water boiler

 

High efficiency and energy saving: T6 vacuum hot water boiler adopts advanced combustion technology, which can fully burn fuel, improve thermal efficiency and reduce energy consumption. Compared with traditional boilers, it can save a lot of energy costs and create greater economic benefits for enterprises.
Environmental protection and safety: The boiler adopts a fully enclosed combustion method, and the flue gas undergoes multi-stage purification treatment before being discharged, which complies with national environmental protection standards. At the same time, the boiler adopts an intelligent control system, which can realize functions such as automatic start and stop, automatic temperature adjustment, etc., which greatly improves the safety and reliability of use.
Flexible and stable: T6 vacuum hot water boiler is suitable for a variety of fuels, such as natural gas, liquefied petroleum gas, etc., and can be customized according to customer needs. At the same time, the boiler adopts a modular design and can easily operate multiple units in parallel to ensure the stability and reliability of the heating system.
Easy maintenance: The boiler has a simple and compact structure, making it easy to install and maintain. The professional after-sales service team ensures that customers receive timely technical support and solutions during use.
Safe and reliable: The internal pressure of the vacuum boiler is always in a vacuum state, avoiding dangers such as expansion, explosion, and rupture. At the same time, a high degree of automated control makes operation easier and reduces the risk of human error.
Long service life: Since oxygen corrosion and scaling are not easy to occur inside the vacuum boiler, its service life is relatively long, generally up to more than 20 years.
To sum up, the T6 vacuum hot water boiler has become a popular heating equipment on the market due to its significant advantages such as high efficiency, energy saving, environmental protection and safety, flexibility and stability, easy maintenance, safety and reliability, and long service life. Whether for home users or corporate customers, choosing T6 vacuum hot water boiler will be the preferred solution to achieve efficient, environmentally friendly and safe heating.

2024-11-05

Boilers are essential for keeping homes and businesses warm and comfortable, but when they start shutting off unexpectedly, it can be frustrating and confusing. Understanding the cause of frequent shutoffs and knowing how to troubleshoot them can save time and money. This article explores common problems that cause boilers to shut off and provides practical solutions to fix them.

Troubleshooting Guide: Why Your Boiler Keeps Shutting Off

The development of social science and technology and technical means has promoted the rapid development of the breeding industry. People obtain meat, eggs, milk, wool, cashmere, hides, silk and medicinal materials from poultry such as chickens, ducks and geese through artificial breeding. For many farms, maintaining a constant temperature living environment for poultry is a top priority.
 
How to choose the type of hot water boiler for heat preservation in farms, Fangkuai Boiler can give you the most sincere guidance and advice.
 
Taking a shrimp farm as an example, we will focus on how users in the aquaculture industry should choose suitable hot water boilers.
 
Generally speaking, shrimp farming requires "cold water", but this "cold water" refers to the natural water temperature in a normal environment, that is, a temperature between 10-20 °C. However, in winter, it is necessary to start the hot water boiler equipment to maintain the temperature of the shrimp pond and ensure that the shrimp can survive normally.
 
In order to meet the needs of the livestock for the environment and diet, a device that can output heat in a lasting and stable manner is required. We can see that in many large farms, one or several steam or hot water boilers will be equipped for the livestock of the farm.
 
The shrimp farm that cooperated with Fangkuai Boiler this time needs to use a boiler to maintain the constant temperature of the shrimp pond. According to the knowledge of Fangkuai boiler sales consultant, the shrimp farm has a total pool volume of 20 tons. The boiler is mainly used in winter, and the water at subzero temperature needs to be heated to about 10°C. After calculation, the technicians of Fangkuai Boiler concluded that a half-ton atmospheric pressure hot water boiler can meet their needs. For this reason, we provided a boiler with an output of 0.35MW (that is, a half-ton capacity). Atmospheric pressure vertical gas hot water boiler (CLSH0.35-95/70-Q). The adjusted hot water boiler can maintain a temperature difference of 14°C between the inlet and outlet water and maintain a constant temperature in the shrimp farm's pool. Combined with the actual situation of the user's project site, the natural gas interface has not yet been connected to the local area. We have customized a plan for using liquefied petroleum gas. The fuel is transported through canned transportation. There is no need to specially prepare a fuel storage site, and it is very clean and convenient to use.
 

Guidance Scheme for Selection of Hot Water Boilers for Thermal Insulation of Farms

According to the structural design, the use of atmospheric hot water boilers should be of no risk. This is mainly due to the fact that the top of the atmospheric hot water boiler is open to the atmosphere, and the internal pressure is always the same as the outside. Many residential and breeding centers choose to use this type of boiler.

Although the safety of atmospheric pressure hot water boilers is very high, this does not mean that the furnace personnel can be negligent. A relatively old steam boiler located in a fish farm in Wangtan Village, Rudong Town, Rudong County, exploded due to improper operation of the boiler operator.

When using a normal pressure hot water boiler, pay attention to the regular observation of the water level to avoid low water level and dry burning. Otherwise, there will be certain dangers, and the service life of the boiler will be seriously reduced. Boiler operators should pay attention to the following matters:
       1. Strictly implement various rules and regulations, earnestly study the professional knowledge of boilers, continuously improve the level, and ensure the safe and economic operation of boilers.
       2. After the normal pressure hot water boiler is put into use, the unit and individual may not change the boiler structure, valve and pipeline system without authorization.
       3. Inspect and inspect various equipments according to regulations before taking over, including: water level of water tank (hot water tank, expansion water tank), energy consumption (boiler gas meter), thermometer (hot water tank temperature, boiler heat medium water temperature), etc. Check the operation records, check the equipment, and learn more about the boiler operation when you transfer the shift.
       4. The succession personnel will go to the boiler room in advance to prepare for the work according to the regulations, shifts and prescribed time, and understand the boiler operation.
       5. The shifter should prepare in advance, carry out serious and comprehensive inspections and investigations, and keep the boiler running normally.
       6. The shifting staff should introduce the relevant problems of equipment operation, water quality and boiler discharge to the successor. If the handover procedure is not completed, the handover personnel must not leave the job. 7. Keep the boiler body clean when the boiler is running, no dirt, no leakage, no rust and corrosion, and fill in the equipment maintenance record carefully and in detail.
       8. The boiler room is one of the key departments of the boiler unit. Except for the boiler room staff, relevant leaders, and safety, security, and department management personnel, other personnel are not allowed to enter without permission.
       9. It is forbidden to store inflammable, explosive and other miscellaneous items in the boiler room. It is necessary to install oil drums and oil pots with a small amount of lubricating oil and cleaning oil. Store them at the designated place and pay attention to check whether there is explosives in the burning.
       10. The boiler room should be equipped with fire-fighting equipment, carefully managed, do not move or use it for other purposes.
       11. The floor, walls, doors and windows of the boiler room are always kept clean and hygienic.
       12. The supervisors should check the operation records and environmental sanitation regularly and irregularly, find problems and solve them in time.
       13. Go to work on time according to the prescribed time, do a good job of shifting records, and do not leave the job casually.
       14. It is strictly forbidden to drink alcohol, sleep, gamble, and fight in the boiler room.
       15. After equipment failures and accidents are reported in time (timely reported to the person in charge at night), the written accident report is written in a realistic manner. After the investigation is clear, after the responsibility is clarified, the accidental loss is caused to the dereliction of duty, and the responsibility is handled.

How to make the normal pressure hot water boiler operate safely?

There are three reasons for the explosion of a gas boiler: gas (fuel), air and heat. Once the three reach a certain level, it is not far from the explosion of the boiler.

The key to preventing the explosion of gas boilers is to prevent the three from reaching certain limits at the same time. Among them, air is ubiquitous, it is very difficult to remove this condition, so the focus of explosion-proof is concentrated on gas and heat sources. Therefore, almost all gas explosion-proof technologies at this stage focus on how to treat gas and heat sources.

A large number of accidents indicate that the explosion of the gas boiler boiler or flue site is caused by the accumulation of gas and air in the furnace or flue, and the fire or high-temperature heat source. The combustible mixture is obviously mixed with air from the air. Forming. Therefore, the core of preventing gas boiler explosion is to prevent the boiler from entering the furnace when it is not running (no flame in the furnace); and it should be noted that the boiler must be "fire and other gas" when it starts, that is, the gas is first supplied and then ignited to form a heat source.

To this end, "Steam Boiler Safety Technical Supervision Regulations" and "Hot Water Boiler Safety Technical Supervision Regulations" clearly stipulate that: gas (including fuel, pulverized coal) boilers must be equipped with reliable ignition program control and flameout protection devices; Explosion-proof doors should also be installed in inflammable and explosive parts such as furnaces and flue ducts. The first half of the regulation is actually based on the mechanism of the explosion to prevent the formation of a mixture of gas and air, and to ensure the realization of "fire and other gas"; the latter part is used as a remedy, once the furnace or flue explosion, through the explosion-proof door Reduce the damage caused by the explosion.

How to prevent gas boiler explosion?

Pickling is the main method for removing a large amount of oxidizing substances and corrosion products inside a gas boiler, and also has the effect of eliminating scale. The pickling process is usually carried out after 1-3 weeks of boiler operation. FANGKUAI Boiler summarizes the steps of boiler pickling for your reference and understanding.

First, cleaning tools
       Boiler energy saver, steam drum, water wall, hydrochloric acid, ammonium bifluoride.

Second, the cleaning method
       1. First, at the beginning of the pickling work, the boiler's economizer, steam drum and water wall are filled with demineralized water.
       2. The boiler is ignited. When the temperature of the boiler rises to 70-80 ° C, the boiler is turned off, and then the pickling operation can be performed. Before the pickling operation, the superheater should also be recharged with demineralized water until the water overflows into the steam drum to prevent acid or acid vapor from being introduced into the superheater.
       3. When the acid is charged into the boiler, the boiler should not be ignited under any circumstances. The steam drum and other venting holes should be opened to remove the hydrogen generated by the reaction of acid and iron. Before making sure that the hydrogen has dissipated, avoid open flames or use electrical equipment that generates sparks to avoid the risk of hydrogen explosion.
       4. Finally, after the acid filling is completed, let the boiler and economizer soak for about 6 hours in the solution, then drain the acid and rinse the superheater with demineralized water. The acid is discharged. After the acid is drained, the boiler feed water pump is operated, and the water of one economizer is filled into the boiler to prevent the water supply shutoff valve from leaking.

Third, matters needing attention
       The gas boiler can be pickled with 5% hydrochloric acid with 0.25% ammonium difluoride inhibitor added. The acid solution is injected into the boiler through the pickling joint on the steam drum down pipe, and the acid filling of the economizer is carried out through the recirculation pipe. The filling of the acid solution should be carried out until the liquid level in the steam drum temporary water level gauge rises significantly until the liquid level rises above the cyclone separator, but it should be noted that the acid liquid cannot enter the superheater, otherwise it will cause serious damage.

How to clean the gas boiler?